Integral of (x+cosx)/(x+2sinx) dx
The solution
Detail solution
-
Rewrite the integrand:
x+2sin(x)x+cos(x)=x+2sin(x)x+x+2sin(x)cos(x)
-
Integrate term-by-term:
-
Don't know the steps in finding this integral.
But the integral is
∫x+2sin(x)xdx
-
Don't know the steps in finding this integral.
But the integral is
∫x+2sin(x)cos(x)dx
The result is: ∫x+2sin(x)xdx+∫x+2sin(x)cos(x)dx
-
Add the constant of integration:
∫x+2sin(x)xdx+∫x+2sin(x)cos(x)dx+constant
The answer is:
∫x+2sin(x)xdx+∫x+2sin(x)cos(x)dx+constant
The answer (Indefinite)
[src]
/ / /
| | |
| x + cos(x) | x | cos(x)
| ------------ dx = C + | ------------ dx + | ------------ dx
| x + 2*sin(x) | x + 2*sin(x) | x + 2*sin(x)
| | |
/ / /
∫x+2sin(x)x+cos(x)dx=C+∫x+2sin(x)xdx+∫x+2sin(x)cos(x)dx
2*pi
/
|
| x + cos(x)
| ------------ dx
| x + 2*sin(x)
|
/
pi
π∫2πx+2sin(x)x+cos(x)dx
=
2*pi
/
|
| x + cos(x)
| ------------ dx
| x + 2*sin(x)
|
/
pi
π∫2πx+2sin(x)x+cos(x)dx
Integral((x + cos(x))/(x + 2*sin(x)), (x, pi, 2*pi))
Use the examples entering the upper and lower limits of integration.