Integral of x/(sqrt(x)+4) dx
The solution
Detail solution
-
Let u=x.
Then let du=2xdx and substitute 2du:
∫u+42u3du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u+4u3du=2∫u+4u3du
-
Rewrite the integrand:
u+4u3=u2−4u+16−u+464
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u)du=−4∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
-
The integral of a constant is the constant times the variable of integration:
∫16du=16u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u+464)du=−64∫u+41du
-
Let u=u+4.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+4)
So, the result is: −64log(u+4)
The result is: 3u3−2u2+16u−64log(u+4)
So, the result is: 32u3−4u2+32u−128log(u+4)
Now substitute u back in:
32x23+32x−4x−128log(x+4)
-
Add the constant of integration:
32x23+32x−4x−128log(x+4)+constant
The answer is:
32x23+32x−4x−128log(x+4)+constant
The answer (Indefinite)
[src]
/
| 3/2
| x / ___\ ___ 2*x
| --------- dx = C - 128*log\4 + \/ x / - 4*x + 32*\/ x + ------
| ___ 3
| \/ x + 4
|
/
∫x+4xdx=C+32x23+32x−4x−128log(x+4)
The graph
86/3 - 128*log(5) + 128*log(4)
−128log(5)+386+128log(4)
=
86/3 - 128*log(5) + 128*log(4)
−128log(5)+386+128log(4)
86/3 - 128*log(5) + 128*log(4)
Use the examples entering the upper and lower limits of integration.