Integral of x*sin3xdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(3x).
Then du(x)=1.
To find v(x):
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=3∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −3cos(u)
Now substitute u back in:
−3cos(3x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3cos(3x))dx=−3∫cos(3x)dx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫3cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=3∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 3sin(u)
Now substitute u back in:
3sin(3x)
So, the result is: −9sin(3x)
-
Add the constant of integration:
−3xcos(3x)+9sin(3x)+constant
The answer is:
−3xcos(3x)+9sin(3x)+constant
The answer (Indefinite)
[src]
/
| sin(3*x) x*cos(3*x)
| x*sin(3*x) dx = C + -------- - ----------
| 9 3
/
∫xsin(3x)dx=C−3xcos(3x)+9sin(3x)
The graph
5*cos(15) sin(15)
- --------- + -------
3 9
9sin(15)−35cos(15)
=
5*cos(15) sin(15)
- --------- + -------
3 9
9sin(15)−35cos(15)
Use the examples entering the upper and lower limits of integration.