Mister Exam

Integral of x*sin3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5              
  /              
 |               
 |  x*sin(3*x) dx
 |               
/                
0                
05xsin(3x)dx\int\limits_{0}^{5} x \sin{\left(3 x \right)}\, dx
Integral(x*sin(3*x), (x, 0, 5))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(3x)\operatorname{dv}{\left(x \right)} = \sin{\left(3 x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

      Now substitute uu back in:

      cos(3x)3- \frac{\cos{\left(3 x \right)}}{3}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (cos(3x)3)dx=cos(3x)dx3\int \left(- \frac{\cos{\left(3 x \right)}}{3}\right)\, dx = - \frac{\int \cos{\left(3 x \right)}\, dx}{3}

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      cos(u)3du\int \frac{\cos{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du3\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{3}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)3\frac{\sin{\left(u \right)}}{3}

      Now substitute uu back in:

      sin(3x)3\frac{\sin{\left(3 x \right)}}{3}

    So, the result is: sin(3x)9- \frac{\sin{\left(3 x \right)}}{9}

  3. Add the constant of integration:

    xcos(3x)3+sin(3x)9+constant- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}+ \mathrm{constant}


The answer is:

xcos(3x)3+sin(3x)9+constant- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                     sin(3*x)   x*cos(3*x)
 | x*sin(3*x) dx = C + -------- - ----------
 |                        9           3     
/                                           
xsin(3x)dx=Cxcos(3x)3+sin(3x)9\int x \sin{\left(3 x \right)}\, dx = C - \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}
The graph
0.05.00.51.01.52.02.53.03.54.04.5-1010
The answer [src]
  5*cos(15)   sin(15)
- --------- + -------
      3          9   
sin(15)95cos(15)3\frac{\sin{\left(15 \right)}}{9} - \frac{5 \cos{\left(15 \right)}}{3}
=
=
  5*cos(15)   sin(15)
- --------- + -------
      3          9   
sin(15)95cos(15)3\frac{\sin{\left(15 \right)}}{9} - \frac{5 \cos{\left(15 \right)}}{3}
-5*cos(15)/3 + sin(15)/9
Numerical answer [src]
1.33840072589327
1.33840072589327

    Use the examples entering the upper and lower limits of integration.