1/3 / | | x*asin(3*x) dx | / 0
Integral(x*asin(3*x), (x, 0, 1/3))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=sin(_theta)/3, rewritten=sin(_theta)**2/27, substep=ConstantTimesRule(constant=1/27, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/27, symbol=_theta), restriction=(x > -1/3) & (x < 1/3), context=x**2/sqrt(1 - 9*x**2), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
// __________ \ || / 2 | 3*|-1/3, x < 1/3)| 2 | \\ 54 18 / x *asin(3*x) | x*asin(3*x) dx = C - ------------------------------------------------------------ + ------------ | 2 2 /
Use the examples entering the upper and lower limits of integration.