Mister Exam

Other calculators

Integral of x*arcsin(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/3              
  /               
 |                
 |  x*asin(3*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{\frac{1}{3}} x \operatorname{asin}{\left(3 x \right)}\, dx$$
Integral(x*asin(3*x), (x, 0, 1/3))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      TrigSubstitutionRule(theta=_theta, func=sin(_theta)/3, rewritten=sin(_theta)**2/27, substep=ConstantTimesRule(constant=1/27, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/27, symbol=_theta), restriction=(x > -1/3) & (x < 1/3), context=x**2/sqrt(1 - 9*x**2), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                          //                 __________                            \               
                          ||                /        2                             |               
                        3*| -1/3, x < 1/3)|    2          
 |                        \\    54             18                                  /   x *asin(3*x)
 | x*asin(3*x) dx = C - ------------------------------------------------------------ + ------------
 |                                                   2                                      2      
/                                                                                                  
$$\int x \operatorname{asin}{\left(3 x \right)}\, dx = C + \frac{x^{2} \operatorname{asin}{\left(3 x \right)}}{2} - \frac{3 \left(\begin{cases} - \frac{x \sqrt{1 - 9 x^{2}}}{18} + \frac{\operatorname{asin}{\left(3 x \right)}}{54} & \text{for}\: x > - \frac{1}{3} \wedge x < \frac{1}{3} \end{cases}\right)}{2}$$
The graph
The answer [src]
pi
--
72
$$\frac{\pi}{72}$$
=
=
pi
--
72
$$\frac{\pi}{72}$$
pi/72
Numerical answer [src]
0.0436332312998582
0.0436332312998582

    Use the examples entering the upper and lower limits of integration.