Mister Exam

Integral of 2x*arcsin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  2*x*asin(3*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 2 x \operatorname{asin}{\left(3 x \right)}\, dx$$
Integral((2*x)*asin(3*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      TrigSubstitutionRule(theta=_theta, func=sin(_theta)/3, rewritten=sin(_theta)**2/27, substep=ConstantTimesRule(constant=1/27, other=sin(_theta)**2, substep=RewriteRule(rewritten=1/2 - cos(2*_theta)/2, substep=AddRule(substeps=[ConstantRule(constant=1/2, context=1/2, symbol=_theta), ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta)], context=1/2 - cos(2*_theta)/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), context=sin(_theta)**2/27, symbol=_theta), restriction=(x > -1/3) & (x < 1/3), context=x**2/sqrt(1 - 9*x**2), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         //                 __________                            \               
 |                          ||                /        2                             |    2          
 | 2*x*asin(3*x) dx = C - 3*| -1/3, x < 1/3)|               
/                           \\    54             18                                  /               
$$\int 2 x \operatorname{asin}{\left(3 x \right)}\, dx = C + x^{2} \operatorname{asin}{\left(3 x \right)} - 3 \left(\begin{cases} - \frac{x \sqrt{1 - 9 x^{2}}}{18} + \frac{\operatorname{asin}{\left(3 x \right)}}{54} & \text{for}\: x > - \frac{1}{3} \wedge x < \frac{1}{3} \end{cases}\right)$$
The graph
The answer [src]
                 ___
17*asin(3)   I*\/ 2 
---------- + -------
    18          3   
$$\frac{17 \operatorname{asin}{\left(3 \right)}}{18} + \frac{\sqrt{2} i}{3}$$
=
=
                 ___
17*asin(3)   I*\/ 2 
---------- + -------
    18          3   
$$\frac{17 \operatorname{asin}{\left(3 \right)}}{18} + \frac{\sqrt{2} i}{3}$$
17*asin(3)/18 + i*sqrt(2)/3
Numerical answer [src]
(1.48391657630434 - 1.19317515709015j)
(1.48391657630434 - 1.19317515709015j)

    Use the examples entering the upper and lower limits of integration.