Mister Exam

Integral of x-sqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /      ___\   
 |  \x - \/ x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \left(- \sqrt{x} + x\right)\, dx$$
Integral(x - sqrt(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                       2      3/2
 | /      ___\          x    2*x   
 | \x - \/ x / dx = C + -- - ------
 |                      2      3   
/                                  
$$\int \left(- \sqrt{x} + x\right)\, dx = C - \frac{2 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{2}$$
The graph
The answer [src]
-1/6
$$- \frac{1}{6}$$
=
=
-1/6
$$- \frac{1}{6}$$
-1/6
Numerical answer [src]
-0.166666666666667
-0.166666666666667

    Use the examples entering the upper and lower limits of integration.