Integral of x-sqrt(x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=32x23
So, the result is: −32x23
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
The result is: −32x23+2x2
-
Add the constant of integration:
−32x23+2x2+constant
The answer is:
−32x23+2x2+constant
The answer (Indefinite)
[src]
/
| 2 3/2
| / ___\ x 2*x
| \x - \/ x / dx = C + -- - ------
| 2 3
/
∫(−x+x)dx=C−32x23+2x2
The graph
Use the examples entering the upper and lower limits of integration.