Mister Exam

Integral of x-sqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  /      ___\   
 |  \x - \/ x / dx
 |                
/                 
0                 
01(x+x)dx\int\limits_{0}^{1} \left(- \sqrt{x} + x\right)\, dx
Integral(x - sqrt(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- \sqrt{x}\right)\, dx = - \int \sqrt{x}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      So, the result is: 2x323- \frac{2 x^{\frac{3}{2}}}{3}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    The result is: 2x323+x22- \frac{2 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{2}

  2. Add the constant of integration:

    2x323+x22+constant- \frac{2 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{2}+ \mathrm{constant}


The answer is:

2x323+x22+constant- \frac{2 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                       2      3/2
 | /      ___\          x    2*x   
 | \x - \/ x / dx = C + -- - ------
 |                      2      3   
/                                  
(x+x)dx=C2x323+x22\int \left(- \sqrt{x} + x\right)\, dx = C - \frac{2 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.500.25
The answer [src]
-1/6
16- \frac{1}{6}
=
=
-1/6
16- \frac{1}{6}
-1/6
Numerical answer [src]
-0.166666666666667
-0.166666666666667

    Use the examples entering the upper and lower limits of integration.