Mister Exam

Other calculators

Integral of (sin(pi*x)-sqrt(x)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /              ___    \   
 |  \sin(pi*x) - \/ x  + 1/ dx
 |                            
/                             
-1                            
11((x+sin(πx))+1)dx\int\limits_{-1}^{1} \left(\left(- \sqrt{x} + \sin{\left(\pi x \right)}\right) + 1\right)\, dx
Integral(sin(pi*x) - sqrt(x) + 1, (x, -1, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- \sqrt{x}\right)\, dx = - \int \sqrt{x}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

        So, the result is: 2x323- \frac{2 x^{\frac{3}{2}}}{3}

      1. Let u=πxu = \pi x.

        Then let du=πdxdu = \pi dx and substitute duπ\frac{du}{\pi}:

        sin(u)πdu\int \frac{\sin{\left(u \right)}}{\pi}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)duπ\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{\pi}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)π- \frac{\cos{\left(u \right)}}{\pi}

        Now substitute uu back in:

        cos(πx)π- \frac{\cos{\left(\pi x \right)}}{\pi}

      The result is: 2x323cos(πx)π- \frac{2 x^{\frac{3}{2}}}{3} - \frac{\cos{\left(\pi x \right)}}{\pi}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: 2x323+xcos(πx)π- \frac{2 x^{\frac{3}{2}}}{3} + x - \frac{\cos{\left(\pi x \right)}}{\pi}

  2. Add the constant of integration:

    2x323+xcos(πx)π+constant- \frac{2 x^{\frac{3}{2}}}{3} + x - \frac{\cos{\left(\pi x \right)}}{\pi}+ \mathrm{constant}


The answer is:

2x323+xcos(πx)π+constant- \frac{2 x^{\frac{3}{2}}}{3} + x - \frac{\cos{\left(\pi x \right)}}{\pi}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                                         3/2            
 | /              ___    \              2*x      cos(pi*x)
 | \sin(pi*x) - \/ x  + 1/ dx = C + x - ------ - ---------
 |                                        3          pi   
/                                                         
((x+sin(πx))+1)dx=C2x323+xcos(πx)π\int \left(\left(- \sqrt{x} + \sin{\left(\pi x \right)}\right) + 1\right)\, dx = C - \frac{2 x^{\frac{3}{2}}}{3} + x - \frac{\cos{\left(\pi x \right)}}{\pi}
The graph
1.000.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
4   2*I
- - ---
3    3 
432i3\frac{4}{3} - \frac{2 i}{3}
=
=
4   2*I
- - ---
3    3 
432i3\frac{4}{3} - \frac{2 i}{3}
4/3 - 2*i/3
Numerical answer [src]
(1.33413269908838 - 0.665867300911624j)
(1.33413269908838 - 0.665867300911624j)

    Use the examples entering the upper and lower limits of integration.