Integral of (sin(pi*x)-sqrt(x)+1) dx
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=32x23
So, the result is: −32x23
-
Let u=πx.
Then let du=πdx and substitute πdu:
∫πsin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=π∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −πcos(u)
Now substitute u back in:
−πcos(πx)
The result is: −32x23−πcos(πx)
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
The result is: −32x23+x−πcos(πx)
-
Add the constant of integration:
−32x23+x−πcos(πx)+constant
The answer is:
−32x23+x−πcos(πx)+constant
The answer (Indefinite)
[src]
/
| 3/2
| / ___ \ 2*x cos(pi*x)
| \sin(pi*x) - \/ x + 1/ dx = C + x - ------ - ---------
| 3 pi
/
∫((−x+sin(πx))+1)dx=C−32x23+x−πcos(πx)
The graph
34−32i
=
34−32i
(1.33413269908838 - 0.665867300911624j)
(1.33413269908838 - 0.665867300911624j)
Use the examples entering the upper and lower limits of integration.