Mister Exam

Other calculators

Integral of 1/(x-sqrt(x^2-x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |             1            
 |  1*------------------- dx
 |           ____________   
 |          /  2            
 |    x - \/  x  - x + 1    
 |                          
/                           
0                           
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x - \sqrt{x^{2} - x + 1}}\, dx$$
Integral(1/(x - sqrt(x^2 - x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
$$\int {{{1}\over{x-\sqrt{x^2-x+1}}}}{\;dx}$$
The answer [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |         ____________   
 |        /      2        
 |  x - \/  1 + x  - x    
 |                        
/                         
0                         
$$\int_{0}^{1}{{{1}\over{x-\sqrt{x^2-x+1}}}\;dx}$$
=
=
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |         ____________   
 |        /      2        
 |  x - \/  1 + x  - x    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{x - \sqrt{x^{2} - x + 1}}\, dx$$
Numerical answer [src]
-86.9204300395196
-86.9204300395196

    Use the examples entering the upper and lower limits of integration.