Mister Exam

Limit of the function x-sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      ___\
 lim \x - \/ x /
x->1+           
limx1+(x+x)\lim_{x \to 1^+}\left(- \sqrt{x} + x\right)
Limit(x - sqrt(x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.51.0-1.0
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx1(x+x)=0\lim_{x \to 1^-}\left(- \sqrt{x} + x\right) = 0
More at x→1 from the left
limx1+(x+x)=0\lim_{x \to 1^+}\left(- \sqrt{x} + x\right) = 0
limx(x+x)=\lim_{x \to \infty}\left(- \sqrt{x} + x\right) = \infty
More at x→oo
limx0(x+x)=0\lim_{x \to 0^-}\left(- \sqrt{x} + x\right) = 0
More at x→0 from the left
limx0+(x+x)=0\lim_{x \to 0^+}\left(- \sqrt{x} + x\right) = 0
More at x→0 from the right
limx(x+x)=\lim_{x \to -\infty}\left(- \sqrt{x} + x\right) = -\infty
More at x→-oo
One‐sided limits [src]
     /      ___\
 lim \x - \/ x /
x->1+           
limx1+(x+x)\lim_{x \to 1^+}\left(- \sqrt{x} + x\right)
0
00
= -1.06414145882481e-30
     /      ___\
 lim \x - \/ x /
x->1-           
limx1(x+x)\lim_{x \to 1^-}\left(- \sqrt{x} + x\right)
0
00
= -7.17592337510183e-33
= -7.17592337510183e-33
Numerical answer [src]
-1.06414145882481e-30
-1.06414145882481e-30
The graph
Limit of the function x-sqrt(x)