Mister Exam

Limit of the function x-sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      ___\
 lim \x - \/ x /
x->1+           
$$\lim_{x \to 1^+}\left(- \sqrt{x} + x\right)$$
Limit(x - sqrt(x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(- \sqrt{x} + x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \sqrt{x} + x\right) = 0$$
$$\lim_{x \to \infty}\left(- \sqrt{x} + x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- \sqrt{x} + x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \sqrt{x} + x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(- \sqrt{x} + x\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /      ___\
 lim \x - \/ x /
x->1+           
$$\lim_{x \to 1^+}\left(- \sqrt{x} + x\right)$$
0
$$0$$
= -1.06414145882481e-30
     /      ___\
 lim \x - \/ x /
x->1-           
$$\lim_{x \to 1^-}\left(- \sqrt{x} + x\right)$$
0
$$0$$
= -7.17592337510183e-33
= -7.17592337510183e-33
Numerical answer [src]
-1.06414145882481e-30
-1.06414145882481e-30
The graph
Limit of the function x-sqrt(x)