Mister Exam

Other calculators


(x-1)/(x-3)

Integral of (x-1)/(x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |  x - 1   
 |  ----- dx
 |  x - 3   
 |          
/           
0           
01x1x3dx\int\limits_{0}^{1} \frac{x - 1}{x - 3}\, dx
Integral((x - 1)/(x - 3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x1x3=1+2x3\frac{x - 1}{x - 3} = 1 + \frac{2}{x - 3}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x3dx=21x3dx\int \frac{2}{x - 3}\, dx = 2 \int \frac{1}{x - 3}\, dx

        1. Let u=x3u = x - 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x3)\log{\left(x - 3 \right)}

        So, the result is: 2log(x3)2 \log{\left(x - 3 \right)}

      The result is: x+2log(x3)x + 2 \log{\left(x - 3 \right)}

    Method #2

    1. Rewrite the integrand:

      x1x3=xx31x3\frac{x - 1}{x - 3} = \frac{x}{x - 3} - \frac{1}{x - 3}

    2. Integrate term-by-term:

      1. Rewrite the integrand:

        xx3=1+3x3\frac{x}{x - 3} = 1 + \frac{3}{x - 3}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          3x3dx=31x3dx\int \frac{3}{x - 3}\, dx = 3 \int \frac{1}{x - 3}\, dx

          1. Let u=x3u = x - 3.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x3)\log{\left(x - 3 \right)}

          So, the result is: 3log(x3)3 \log{\left(x - 3 \right)}

        The result is: x+3log(x3)x + 3 \log{\left(x - 3 \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x3)dx=1x3dx\int \left(- \frac{1}{x - 3}\right)\, dx = - \int \frac{1}{x - 3}\, dx

        1. Let u=x3u = x - 3.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x3)\log{\left(x - 3 \right)}

        So, the result is: log(x3)- \log{\left(x - 3 \right)}

      The result is: x+3log(x3)log(x3)x + 3 \log{\left(x - 3 \right)} - \log{\left(x - 3 \right)}

  2. Add the constant of integration:

    x+2log(x3)+constantx + 2 \log{\left(x - 3 \right)}+ \mathrm{constant}


The answer is:

x+2log(x3)+constantx + 2 \log{\left(x - 3 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 | x - 1                           
 | ----- dx = C + x + 2*log(-3 + x)
 | x - 3                           
 |                                 
/                                  
x1x3dx=C+x+2log(x3)\int \frac{x - 1}{x - 3}\, dx = C + x + 2 \log{\left(x - 3 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
The answer [src]
1 - 2*log(3) + 2*log(2)
2log(3)+1+2log(2)- 2 \log{\left(3 \right)} + 1 + 2 \log{\left(2 \right)}
=
=
1 - 2*log(3) + 2*log(2)
2log(3)+1+2log(2)- 2 \log{\left(3 \right)} + 1 + 2 \log{\left(2 \right)}
1 - 2*log(3) + 2*log(2)
Numerical answer [src]
0.189069783783671
0.189069783783671
The graph
Integral of (x-1)/(x-3) dx

    Use the examples entering the upper and lower limits of integration.