Mister Exam

Other calculators

Integral of (x-1)/((x-3)*(x-4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       x - 1        
 |  --------------- dx
 |  (x - 3)*(x - 4)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{x - 1}{\left(x - 4\right) \left(x - 3\right)}\, dx$$
Integral((x - 1)/(((x - 3)*(x - 4))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |      x - 1                                            
 | --------------- dx = C - 2*log(-3 + x) + 3*log(-4 + x)
 | (x - 3)*(x - 4)                                       
 |                                                       
/                                                        
$$\int \frac{x - 1}{\left(x - 4\right) \left(x - 3\right)}\, dx = C + 3 \log{\left(x - 4 \right)} - 2 \log{\left(x - 3 \right)}$$
The graph
The answer [src]
-3*log(4) - 2*log(2) + 5*log(3)
$$- 3 \log{\left(4 \right)} - 2 \log{\left(2 \right)} + 5 \log{\left(3 \right)}$$
=
=
-3*log(4) - 2*log(2) + 5*log(3)
$$- 3 \log{\left(4 \right)} - 2 \log{\left(2 \right)} + 5 \log{\left(3 \right)}$$
-3*log(4) - 2*log(2) + 5*log(3)
Numerical answer [src]
-0.052116001139014
-0.052116001139014

    Use the examples entering the upper and lower limits of integration.