Integral of (7x-1)/((x-3)^2+4) dx
The solution
The answer (Indefinite)
[src]
/
| / 2 \
| 7*x - 1 / 3 x\ 7*log\13 + x - 6*x/
| ------------ dx = C + 10*atan|- - + -| + --------------------
| 2 \ 2 2/ 2
| (x - 3) + 4
|
/
∫(x−3)2+47x−1dx=C+27log(x2−6x+13)+10atan(2x−23)
The graph
7*log(13) 5*pi 7*log(8)
10*atan(3/2) - --------- - ---- + --------
2 2 2
−27log(13)−25π+27log(8)+10atan(23)
=
7*log(13) 5*pi 7*log(8)
10*atan(3/2) - --------- - ---- + --------
2 2 2
−27log(13)−25π+27log(8)+10atan(23)
10*atan(3/2) - 7*log(13)/2 - 5*pi/2 + 7*log(8)/2
Use the examples entering the upper and lower limits of integration.