Mister Exam

Other calculators


x/(2-x)

Integral of x/(2-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    x     
 |  ----- dx
 |  2 - x   
 |          
/           
0           
01x2xdx\int\limits_{0}^{1} \frac{x}{2 - x}\, dx
Integral(x/(2 - x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      x2x=12x2\frac{x}{2 - x} = -1 - \frac{2}{x - 2}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        (1)dx=x\int \left(-1\right)\, dx = - x

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x2)dx=21x2dx\int \left(- \frac{2}{x - 2}\right)\, dx = - 2 \int \frac{1}{x - 2}\, dx

        1. Let u=x2u = x - 2.

          Then let du=dxdu = dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(x2)\log{\left(x - 2 \right)}

        So, the result is: 2log(x2)- 2 \log{\left(x - 2 \right)}

      The result is: x2log(x2)- x - 2 \log{\left(x - 2 \right)}

    Method #2

    1. Rewrite the integrand:

      x2x=xx2\frac{x}{2 - x} = - \frac{x}{x - 2}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (xx2)dx=xx2dx\int \left(- \frac{x}{x - 2}\right)\, dx = - \int \frac{x}{x - 2}\, dx

      1. Rewrite the integrand:

        xx2=1+2x2\frac{x}{x - 2} = 1 + \frac{2}{x - 2}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        1. The integral of a constant times a function is the constant times the integral of the function:

          2x2dx=21x2dx\int \frac{2}{x - 2}\, dx = 2 \int \frac{1}{x - 2}\, dx

          1. Let u=x2u = x - 2.

            Then let du=dxdu = dx and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(x2)\log{\left(x - 2 \right)}

          So, the result is: 2log(x2)2 \log{\left(x - 2 \right)}

        The result is: x+2log(x2)x + 2 \log{\left(x - 2 \right)}

      So, the result is: x2log(x2)- x - 2 \log{\left(x - 2 \right)}

  2. Add the constant of integration:

    x2log(x2)+constant- x - 2 \log{\left(x - 2 \right)}+ \mathrm{constant}


The answer is:

x2log(x2)+constant- x - 2 \log{\left(x - 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |   x                             
 | ----- dx = C - x - 2*log(-2 + x)
 | 2 - x                           
 |                                 
/                                  
x2xdx=Cx2log(x2)\int \frac{x}{2 - x}\, dx = C - x - 2 \log{\left(x - 2 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
-1 + 2*log(2)
1+2log(2)-1 + 2 \log{\left(2 \right)}
=
=
-1 + 2*log(2)
1+2log(2)-1 + 2 \log{\left(2 \right)}
-1 + 2*log(2)
Numerical answer [src]
0.386294361119891
0.386294361119891
The graph
Integral of x/(2-x) dx

    Use the examples entering the upper and lower limits of integration.