Mister Exam

Other calculators:


x/(2-x)

Limit of the function x/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /  x  \
 lim  |-----|
x->-oo\2 - x/
limx(x2x)\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right)
Limit(x/(2 - x), x, -oo)
Detail solution
Let's take the limit
limx(x2x)\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right)
Let's divide numerator and denominator by x:
limx(x2x)\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right) =
limx11+2x\lim_{x \to -\infty} \frac{1}{-1 + \frac{2}{x}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx11+2x=limu0+12u1\lim_{x \to -\infty} \frac{1}{-1 + \frac{2}{x}} = \lim_{u \to 0^+} \frac{1}{2 u - 1}
=
11+02=1\frac{1}{-1 + 0 \cdot 2} = -1

The final answer:
limx(x2x)=1\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right) = -1
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
limxx=\lim_{x \to -\infty} x = -\infty
and limit for the denominator is
limx(2x)=\lim_{x \to -\infty}\left(2 - x\right) = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(x2x)\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right)
=
limx(ddxxddx(2x))\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \left(2 - x\right)}\right)
=
limx1\lim_{x \to -\infty} -1
=
limx1\lim_{x \to -\infty} -1
=
1-1
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
-1
1-1
Other limits x→0, -oo, +oo, 1
limx(x2x)=1\lim_{x \to -\infty}\left(\frac{x}{2 - x}\right) = -1
limx(x2x)=1\lim_{x \to \infty}\left(\frac{x}{2 - x}\right) = -1
More at x→oo
limx0(x2x)=0\lim_{x \to 0^-}\left(\frac{x}{2 - x}\right) = 0
More at x→0 from the left
limx0+(x2x)=0\lim_{x \to 0^+}\left(\frac{x}{2 - x}\right) = 0
More at x→0 from the right
limx1(x2x)=1\lim_{x \to 1^-}\left(\frac{x}{2 - x}\right) = 1
More at x→1 from the left
limx1+(x2x)=1\lim_{x \to 1^+}\left(\frac{x}{2 - x}\right) = 1
More at x→1 from the right
The graph
Limit of the function x/(2-x)