Mister Exam

Other calculators

Integral of cos(x/2)-x+pi dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
  /                     
 |                      
 |  /   /x\         \   
 |  |cos|-| - x + pi| dx
 |  \   \2/         /   
 |                      
/                       
0                       
0π((x+cos(x2))+π)dx\int\limits_{0}^{\pi} \left(\left(- x + \cos{\left(\frac{x}{2} \right)}\right) + \pi\right)\, dx
Integral(cos(x/2) - x + pi, (x, 0, pi))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x22- \frac{x^{2}}{2}

      1. Let u=x2u = \frac{x}{2}.

        Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

        2cos(u)du\int 2 \cos{\left(u \right)}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=2cos(u)du\int \cos{\left(u \right)}\, du = 2 \int \cos{\left(u \right)}\, du

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: 2sin(u)2 \sin{\left(u \right)}

        Now substitute uu back in:

        2sin(x2)2 \sin{\left(\frac{x}{2} \right)}

      The result is: x22+2sin(x2)- \frac{x^{2}}{2} + 2 \sin{\left(\frac{x}{2} \right)}

    1. The integral of a constant is the constant times the variable of integration:

      πdx=πx\int \pi\, dx = \pi x

    The result is: x22+πx+2sin(x2)- \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}

  2. Now simplify:

    x22+πx+2sin(x2)- \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}

  3. Add the constant of integration:

    x22+πx+2sin(x2)+constant- \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}


The answer is:

x22+πx+2sin(x2)+constant- \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               
 |                                        2       
 | /   /x\         \               /x\   x        
 | |cos|-| - x + pi| dx = C + 2*sin|-| - -- + pi*x
 | \   \2/         /               \2/   2        
 |                                                
/                                                 
((x+cos(x2))+π)dx=Cx22+πx+2sin(x2)\int \left(\left(- x + \cos{\left(\frac{x}{2} \right)}\right) + \pi\right)\, dx = C - \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}
The graph
0.000.250.500.751.001.251.501.752.002.252.502.753.00010
The answer [src]
      2
    pi 
2 + ---
     2 
2+π222 + \frac{\pi^{2}}{2}
=
=
      2
    pi 
2 + ---
     2 
2+π222 + \frac{\pi^{2}}{2}
2 + pi^2/2
Numerical answer [src]
6.93480220054468
6.93480220054468

    Use the examples entering the upper and lower limits of integration.