Mister Exam

Other calculators

Integral of cos(x/2)-x+pi dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
  /                     
 |                      
 |  /   /x\         \   
 |  |cos|-| - x + pi| dx
 |  \   \2/         /   
 |                      
/                       
0                       
$$\int\limits_{0}^{\pi} \left(\left(- x + \cos{\left(\frac{x}{2} \right)}\right) + \pi\right)\, dx$$
Integral(cos(x/2) - x + pi, (x, 0, pi))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                        2       
 | /   /x\         \               /x\   x        
 | |cos|-| - x + pi| dx = C + 2*sin|-| - -- + pi*x
 | \   \2/         /               \2/   2        
 |                                                
/                                                 
$$\int \left(\left(- x + \cos{\left(\frac{x}{2} \right)}\right) + \pi\right)\, dx = C - \frac{x^{2}}{2} + \pi x + 2 \sin{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
      2
    pi 
2 + ---
     2 
$$2 + \frac{\pi^{2}}{2}$$
=
=
      2
    pi 
2 + ---
     2 
$$2 + \frac{\pi^{2}}{2}$$
2 + pi^2/2
Numerical answer [src]
6.93480220054468
6.93480220054468

    Use the examples entering the upper and lower limits of integration.