Integral of cos(x/2)-x+pi dx
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x)dx=−∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: −2x2
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
The result is: −2x2+2sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫πdx=πx
The result is: −2x2+πx+2sin(2x)
-
Now simplify:
−2x2+πx+2sin(2x)
-
Add the constant of integration:
−2x2+πx+2sin(2x)+constant
The answer is:
−2x2+πx+2sin(2x)+constant
The answer (Indefinite)
[src]
/
| 2
| / /x\ \ /x\ x
| |cos|-| - x + pi| dx = C + 2*sin|-| - -- + pi*x
| \ \2/ / \2/ 2
|
/
∫((−x+cos(2x))+π)dx=C−2x2+πx+2sin(2x)
The graph
2+2π2
=
2+2π2
Use the examples entering the upper and lower limits of integration.