Mister Exam

Other calculators


x/(2x-3)

Integral of x/(2x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     x      
 |  ------- dx
 |  2*x - 3   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{x}{2 x - 3}\, dx$$
Integral(x/(2*x - 3), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |    x             x   3*log(-3 + 2*x)
 | ------- dx = C + - + ---------------
 | 2*x - 3          2          4       
 |                                     
/                                      
$$\int \frac{x}{2 x - 3}\, dx = C + \frac{x}{2} + \frac{3 \log{\left(2 x - 3 \right)}}{4}$$
The graph
The answer [src]
1   3*log(3)
- - --------
2      4    
$$\frac{1}{2} - \frac{3 \log{\left(3 \right)}}{4}$$
=
=
1   3*log(3)
- - --------
2      4    
$$\frac{1}{2} - \frac{3 \log{\left(3 \right)}}{4}$$
1/2 - 3*log(3)/4
Numerical answer [src]
-0.323959216501082
-0.323959216501082
The graph
Integral of x/(2x-3) dx

    Use the examples entering the upper and lower limits of integration.