Mister Exam

Other calculators

Integral of (x/2)*(x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5             
  /             
 |              
 |  x           
 |  -*(x - 3) dx
 |  2           
 |              
/               
3               
$$\int\limits_{3}^{5} \frac{x}{2} \left(x - 3\right)\, dx$$
Integral((x/2)*(x - 3), (x, 3, 5))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                       2    3
 | x                  3*x    x 
 | -*(x - 3) dx = C - ---- + --
 | 2                   4     6 
 |                             
/                              
$$\int \frac{x}{2} \left(x - 3\right)\, dx = C + \frac{x^{3}}{6} - \frac{3 x^{2}}{4}$$
The graph
The answer [src]
13/3
$$\frac{13}{3}$$
=
=
13/3
$$\frac{13}{3}$$
13/3
Numerical answer [src]
4.33333333333333
4.33333333333333

    Use the examples entering the upper and lower limits of integration.