Integral of xcosxsinx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(x)cos(x).
Then du(x)=1.
To find v(x):
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
Method #2
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos2(x))dx=−2∫cos2(x)dx
-
Rewrite the integrand:
cos2(x)=2cos(2x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(2x)dx=2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 4sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+4sin(2x)
So, the result is: −4x−8sin(2x)
-
Now simplify:
−4xcos(2x)+8sin(2x)
-
Add the constant of integration:
−4xcos(2x)+8sin(2x)+constant
The answer is:
−4xcos(2x)+8sin(2x)+constant
The answer (Indefinite)
[src]
/ 2
| x sin(2*x) x*cos (x)
| x*cos(x)*sin(x) dx = C + - + -------- - ---------
| 4 8 2
/
8sin(2x)−2xcos(2x)
The graph
2 2
cos (1) sin (1) cos(1)*sin(1)
- ------- + ------- + -------------
4 4 4
8sin2−2cos2
=
2 2
cos (1) sin (1) cos(1)*sin(1)
- ------- + ------- + -------------
4 4 4
−4cos2(1)+4sin(1)cos(1)+4sin2(1)
Use the examples entering the upper and lower limits of integration.