Mister Exam

Other calculators


x*cos(x)*sin(x)*dx

Integral of x*cos(x)*sin(x)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
 --                     
 2                      
  /                     
 |                      
 |  x*cos(x)*sin(x)*1 dx
 |                      
/                       
pi                      
--                      
4                       
π4π2xcos(x)sin(x)1dx\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \cos{\left(x \right)} \sin{\left(x \right)} 1\, dx
Integral(x*cos(x)*sin(x)*1, (x, pi/4, pi/2))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)cos(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        udu\int u\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u)du=udu\int \left(- u\right)\, du = - \int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u22- \frac{u^{2}}{2}

        Now substitute uu back in:

        cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

      Method #2

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        udu\int u\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        Now substitute uu back in:

        sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (cos2(x)2)dx=cos2(x)dx2\int \left(- \frac{\cos^{2}{\left(x \right)}}{2}\right)\, dx = - \frac{\int \cos^{2}{\left(x \right)}\, dx}{2}

    1. Rewrite the integrand:

      cos2(x)=cos(2x)2+12\cos^{2}{\left(x \right)} = \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(2x)2dx=cos(2x)dx2\int \frac{\cos{\left(2 x \right)}}{2}\, dx = \frac{\int \cos{\left(2 x \right)}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)4\frac{\sin{\left(2 x \right)}}{4}

      1. The integral of a constant is the constant times the variable of integration:

        12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

      The result is: x2+sin(2x)4\frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4}

    So, the result is: x4sin(2x)8- \frac{x}{4} - \frac{\sin{\left(2 x \right)}}{8}

  3. Now simplify:

    xcos(2x)4+sin(2x)8- \frac{x \cos{\left(2 x \right)}}{4} + \frac{\sin{\left(2 x \right)}}{8}

  4. Add the constant of integration:

    xcos(2x)4+sin(2x)8+constant- \frac{x \cos{\left(2 x \right)}}{4} + \frac{\sin{\left(2 x \right)}}{8}+ \mathrm{constant}


The answer is:

xcos(2x)4+sin(2x)8+constant- \frac{x \cos{\left(2 x \right)}}{4} + \frac{\sin{\left(2 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                               2   
 |                            x   sin(2*x)   x*cos (x)
 | x*cos(x)*sin(x)*1 dx = C + - + -------- - ---------
 |                            4      8           2    
/                                                     
xcos(x)sin(x)1dx=Cxcos2(x)2+x4+sin(2x)8\int x \cos{\left(x \right)} \sin{\left(x \right)} 1\, dx = C - \frac{x \cos^{2}{\left(x \right)}}{2} + \frac{x}{4} + \frac{\sin{\left(2 x \right)}}{8}
The graph
0.800.850.900.951.001.051.101.151.201.251.301.351.401.451.501.550.00.5
The answer [src]
  1   pi
- - + --
  8   8 
18+π8- \frac{1}{8} + \frac{\pi}{8}
=
=
  1   pi
- - + --
  8   8 
18+π8- \frac{1}{8} + \frac{\pi}{8}
Numerical answer [src]
0.267699081698724
0.267699081698724
The graph
Integral of x*cos(x)*sin(x)*dx dx

    Use the examples entering the upper and lower limits of integration.