Mister Exam

Other calculators

Integral of cos(x)*cos(x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |  cos(x)*cos(x)*sin(x) dx
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \cos{\left(x \right)} \cos{\left(x \right)} \sin{\left(x \right)}\, dx$$
Integral((cos(x)*cos(x))*sin(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 3   
 |                               cos (x)
 | cos(x)*cos(x)*sin(x) dx = C - -------
 |                                  3   
/                                       
$$\int \cos{\left(x \right)} \cos{\left(x \right)} \sin{\left(x \right)}\, dx = C - \frac{\cos^{3}{\left(x \right)}}{3}$$
The graph
The answer [src]
       3   
1   cos (1)
- - -------
3      3   
$$\frac{1}{3} - \frac{\cos^{3}{\left(1 \right)}}{3}$$
=
=
       3   
1   cos (1)
- - -------
3      3   
$$\frac{1}{3} - \frac{\cos^{3}{\left(1 \right)}}{3}$$
1/3 - cos(1)^3/3
Numerical answer [src]
0.280757131583002
0.280757131583002

    Use the examples entering the upper and lower limits of integration.