1 / | | cos(x)*cos(x)*sin(x) dx | / 0
Integral((cos(x)*cos(x))*sin(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ 3 | cos (x) | cos(x)*cos(x)*sin(x) dx = C - ------- | 3 /
3 1 cos (1) - - ------- 3 3
=
3 1 cos (1) - - ------- 3 3
1/3 - cos(1)^3/3
Use the examples entering the upper and lower limits of integration.