1 / | | ______________ | \/ 1 + 3*sin(x) *cos(x) dx | / 0
Integral(sqrt(1 + 3*sin(x))*cos(x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3/2 | ______________ 2*(1 + 3*sin(x)) | \/ 1 + 3*sin(x) *cos(x) dx = C + ------------------- | 9 /
______________ ______________ 2 2*\/ 1 + 3*sin(1) 2*\/ 1 + 3*sin(1) *sin(1) - - + ------------------ + ------------------------- 9 9 3
=
______________ ______________ 2 2*\/ 1 + 3*sin(1) 2*\/ 1 + 3*sin(1) *sin(1) - - + ------------------ + ------------------------- 9 9 3
-2/9 + 2*sqrt(1 + 3*sin(1))/9 + 2*sqrt(1 + 3*sin(1))*sin(1)/3
Use the examples entering the upper and lower limits of integration.