Integral of sqrt(1+3sin(x))cos(x)dx dx
The solution
Detail solution
-
Let u=3sin(x)+1.
Then let du=3cos(x)dx and substitute 3du:
∫3udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=3∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 92u23
Now substitute u back in:
92(3sin(x)+1)23
-
Add the constant of integration:
92(3sin(x)+1)23+constant
The answer is:
92(3sin(x)+1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| ______________ 2*(1 + 3*sin(x))
| \/ 1 + 3*sin(x) *cos(x) dx = C + -------------------
| 9
/
∫3sin(x)+1cos(x)dx=C+92(3sin(x)+1)23
The graph
______________ ______________
2 2*\/ 1 + 3*sin(1) 2*\/ 1 + 3*sin(1) *sin(1)
- - + ------------------ + -------------------------
9 9 3
−92+921+3sin(1)+321+3sin(1)sin(1)
=
______________ ______________
2 2*\/ 1 + 3*sin(1) 2*\/ 1 + 3*sin(1) *sin(1)
- - + ------------------ + -------------------------
9 9 3
−92+921+3sin(1)+321+3sin(1)sin(1)
-2/9 + 2*sqrt(1 + 3*sin(1))/9 + 2*sqrt(1 + 3*sin(1))*sin(1)/3
Use the examples entering the upper and lower limits of integration.