Mister Exam

Integral of sin(x)*cos(x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x)*cos(x)*1 dx
 |                    
/                     
0                     
01sin(x)cos(x)1dx\int\limits_{0}^{1} \sin{\left(x \right)} \cos{\left(x \right)} 1\, dx
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(x)u = \sin{\left(x \right)}.

      Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

    Method #2

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

      udu\int u\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u)du=udu\int \left(- u\right)\, du = - \int u\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        So, the result is: u22- \frac{u^{2}}{2}

      Now substitute uu back in:

      cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

  2. Add the constant of integration:

    sin2(x)2+constant\frac{\sin^{2}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

sin2(x)2+constant\frac{\sin^{2}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            2   
 |                          sin (x)
 | sin(x)*cos(x)*1 dx = C + -------
 |                             2   
/                                  
cos2x2-{{\cos ^2x}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
   2   
sin (1)
-------
   2   
12cos212{{1}\over{2}}-{{\cos ^21}\over{2}}
=
=
   2   
sin (1)
-------
   2   
sin2(1)2\frac{\sin^{2}{\left(1 \right)}}{2}
Numerical answer [src]
0.354036709136786
0.354036709136786
The graph
Integral of sin(x)*cos(x)dx dx

    Use the examples entering the upper and lower limits of integration.