Integral of sin(x)*cos(x)dx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(x)
Method #2
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
-
Add the constant of integration:
2sin2(x)+constant
The answer is:
2sin2(x)+constant
The answer (Indefinite)
[src]
/ 2
| sin (x)
| sin(x)*cos(x)*1 dx = C + -------
| 2
/
−2cos2x
The graph
21−2cos21
=
2sin2(1)
Use the examples entering the upper and lower limits of integration.