Mister Exam

Other calculators


sqrt(sin^3x)*cosx*dx
  • How to use it?

  • Integral of d{x}:
  • Integral of 3 Integral of 3
  • Integral of 6 Integral of 6
  • Integral of e^x/(1+e^x) Integral of e^x/(1+e^x)
  • Integral of 2*x/(1+x^2) Integral of 2*x/(1+x^2)
  • Identical expressions

  • sqrt(sin^3x)*cosx*dx
  • square root of ( sinus of cubed x) multiply by co sinus of e of x multiply by dx
  • √(sin^3x)*cosx*dx
  • sqrt(sin3x)*cosx*dx
  • sqrtsin3x*cosx*dx
  • sqrt(sin³x)*cosx*dx
  • sqrt(sin to the power of 3x)*cosx*dx
  • sqrt(sin^3x)cosxdx
  • sqrt(sin3x)cosxdx
  • sqrtsin3xcosxdx
  • sqrtsin^3xcosxdx

Integral of sqrt(sin^3x)*cosx*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |     _________            
 |    /    3                
 |  \/  sin (x) *cos(x)*1 dx
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \sqrt{\sin^{3}{\left(x \right)}} \cos{\left(x \right)} 1\, dx$$
The answer (Indefinite) [src]
  /                                                    
 |                                     _________       
 |    _________                       /    3           
 |   /    3                       2*\/  sin (x) *sin(x)
 | \/  sin (x) *cos(x)*1 dx = C + ---------------------
 |                                          5          
/                                                      
$${{2\,\left(\sin x\right)^{{{5}\over{2}}}}\over{5}}$$
The graph
The answer [src]
     5/2   
2*sin   (1)
-----------
     5     
$${{2\,\left(\sin 1\right)^{{{5}\over{2}}}}\over{5}}$$
=
=
     5/2   
2*sin   (1)
-----------
     5     
$$\frac{2 \sin^{\frac{5}{2}}{\left(1 \right)}}{5}$$
Numerical answer [src]
0.259811191697288
0.259811191697288
The graph
Integral of sqrt(sin^3x)*cosx*dx dx

    Use the examples entering the upper and lower limits of integration.