Mister Exam

Other calculators


(xcosx/2)

Integral of (xcosx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*cos(x)   
 |  -------- dx
 |     2       
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x \cos{\left(x \right)}}{2}\, dx$$
Integral(x*cos(x)/2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of cosine is sine:

      Now evaluate the sub-integral.

    2. The integral of sine is negative cosine:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | x*cos(x)          cos(x)   x*sin(x)
 | -------- dx = C + ------ + --------
 |    2                2         2    
 |                                    
/                                     
$${{x\,\sin x+\cos x}\over{2}}$$
The graph
The answer [src]
  1   cos(1)   sin(1)
- - + ------ + ------
  2     2        2   
$${{\sin 1+\cos 1-1}\over{2}}$$
=
=
  1   cos(1)   sin(1)
- - + ------ + ------
  2     2        2   
$$- \frac{1}{2} + \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)}}{2}$$
Numerical answer [src]
0.190886645338018
0.190886645338018
The graph
Integral of (xcosx/2) dx

    Use the examples entering the upper and lower limits of integration.