Mister Exam

Integral of (5+2x)⁸dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |           8     
 |  (5 + 2*x) *1 dx
 |                 
/                  
0                  
01(2x+5)81dx\int\limits_{0}^{1} \left(2 x + 5\right)^{8} \cdot 1\, dx
Integral((5 + 2*x)^8*1, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x+5u = 2 x + 5.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      u84du\int \frac{u^{8}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u82du=u8du2\int \frac{u^{8}}{2}\, du = \frac{\int u^{8}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

        So, the result is: u918\frac{u^{9}}{18}

      Now substitute uu back in:

      (2x+5)918\frac{\left(2 x + 5\right)^{9}}{18}

    Method #2

    1. Rewrite the integrand:

      (2x+5)81=256x8+5120x7+44800x6+224000x5+700000x4+1400000x3+1750000x2+1250000x+390625\left(2 x + 5\right)^{8} \cdot 1 = 256 x^{8} + 5120 x^{7} + 44800 x^{6} + 224000 x^{5} + 700000 x^{4} + 1400000 x^{3} + 1750000 x^{2} + 1250000 x + 390625

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        256x8dx=256x8dx\int 256 x^{8}\, dx = 256 \int x^{8}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x8dx=x99\int x^{8}\, dx = \frac{x^{9}}{9}

        So, the result is: 256x99\frac{256 x^{9}}{9}

      1. The integral of a constant times a function is the constant times the integral of the function:

        5120x7dx=5120x7dx\int 5120 x^{7}\, dx = 5120 \int x^{7}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x7dx=x88\int x^{7}\, dx = \frac{x^{8}}{8}

        So, the result is: 640x8640 x^{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        44800x6dx=44800x6dx\int 44800 x^{6}\, dx = 44800 \int x^{6}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x6dx=x77\int x^{6}\, dx = \frac{x^{7}}{7}

        So, the result is: 6400x76400 x^{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        224000x5dx=224000x5dx\int 224000 x^{5}\, dx = 224000 \int x^{5}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x5dx=x66\int x^{5}\, dx = \frac{x^{6}}{6}

        So, the result is: 112000x63\frac{112000 x^{6}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        700000x4dx=700000x4dx\int 700000 x^{4}\, dx = 700000 \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: 140000x5140000 x^{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1400000x3dx=1400000x3dx\int 1400000 x^{3}\, dx = 1400000 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 350000x4350000 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1750000x2dx=1750000x2dx\int 1750000 x^{2}\, dx = 1750000 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 1750000x33\frac{1750000 x^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        1250000xdx=1250000xdx\int 1250000 x\, dx = 1250000 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 625000x2625000 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        390625dx=390625x\int 390625\, dx = 390625 x

      The result is: 256x99+640x8+6400x7+112000x63+140000x5+350000x4+1750000x33+625000x2+390625x\frac{256 x^{9}}{9} + 640 x^{8} + 6400 x^{7} + \frac{112000 x^{6}}{3} + 140000 x^{5} + 350000 x^{4} + \frac{1750000 x^{3}}{3} + 625000 x^{2} + 390625 x

  2. Add the constant of integration:

    (2x+5)918+constant\frac{\left(2 x + 5\right)^{9}}{18}+ \mathrm{constant}


The answer is:

(2x+5)918+constant\frac{\left(2 x + 5\right)^{9}}{18}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                9
 |          8            (5 + 2*x) 
 | (5 + 2*x) *1 dx = C + ----------
 |                           18    
/                                  
(2x+5)81dx=C+(2x+5)918\int \left(2 x + 5\right)^{8} \cdot 1\, dx = C + \frac{\left(2 x + 5\right)^{9}}{18}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010000000
The answer [src]
19200241/9
192002419\frac{19200241}{9}
=
=
19200241/9
192002419\frac{19200241}{9}
Numerical answer [src]
2133360.11111111
2133360.11111111
The graph
Integral of (5+2x)⁸dx dx

    Use the examples entering the upper and lower limits of integration.