Mister Exam

Other calculators

Integral of sin(2xcosx)/(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(2*x*cos(x))   
 |  --------------- dx
 |        2*x         
 |                    
/                     
1/2                   
$$\int\limits_{\frac{1}{2}}^{1} \frac{\sin{\left(2 x \cos{\left(x \right)} \right)}}{2 x}\, dx$$
Integral(sin((2*x)*cos(x))/((2*x)), (x, 1/2, 1))
The answer (Indefinite) [src]
                              /                  
                             |                   
                             | sin(2*x*cos(x))   
                             | --------------- dx
  /                          |        x          
 |                           |                   
 | sin(2*x*cos(x))          /                    
 | --------------- dx = C + ---------------------
 |       2*x                          2          
 |                                               
/                                                
$$\int \frac{\sin{\left(2 x \cos{\left(x \right)} \right)}}{2 x}\, dx = C + \frac{\int \frac{\sin{\left(2 x \cos{\left(x \right)} \right)}}{x}\, dx}{2}$$
The answer [src]
  1                   
  /                   
 |                    
 |  sin(2*x*cos(x))   
 |  --------------- dx
 |         x          
 |                    
/                     
1/2                   
----------------------
          2           
$$\frac{\int\limits_{\frac{1}{2}}^{1} \frac{\sin{\left(2 x \cos{\left(x \right)} \right)}}{x}\, dx}{2}$$
=
=
  1                   
  /                   
 |                    
 |  sin(2*x*cos(x))   
 |  --------------- dx
 |         x          
 |                    
/                     
1/2                   
----------------------
          2           
$$\frac{\int\limits_{\frac{1}{2}}^{1} \frac{\sin{\left(2 x \cos{\left(x \right)} \right)}}{x}\, dx}{2}$$
Integral(sin(2*x*cos(x))/x, (x, 1/2, 1))/2
Numerical answer [src]
0.29885982122231
0.29885982122231

    Use the examples entering the upper and lower limits of integration.