Mister Exam

Other calculators

Integral of exp(2x)*cos(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   2*x    /x\   
 |  e   *cos|-| dx
 |          \2/   
 |                
/                 
0                 
01e2xcos(x2)dx\int\limits_{0}^{1} e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx
Integral(exp(2*x)*cos(x/2), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand e2xcos(x2)e^{2 x} \cos{\left(\frac{x}{2} \right)}:

      Let u(x)=cos(x2)u{\left(x \right)} = \cos{\left(\frac{x}{2} \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x2)dx=e2xcos(x2)2(e2xsin(x2)4)dx\int e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx = \frac{e^{2 x} \cos{\left(\frac{x}{2} \right)}}{2} - \int \left(- \frac{e^{2 x} \sin{\left(\frac{x}{2} \right)}}{4}\right)\, dx.

    2. For the integrand e2xsin(x2)4- \frac{e^{2 x} \sin{\left(\frac{x}{2} \right)}}{4}:

      Let u(x)=sin(x2)4u{\left(x \right)} = - \frac{\sin{\left(\frac{x}{2} \right)}}{4} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x2)dx=e2xsin(x2)8+e2xcos(x2)2+(e2xcos(x2)16)dx\int e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx = \frac{e^{2 x} \sin{\left(\frac{x}{2} \right)}}{8} + \frac{e^{2 x} \cos{\left(\frac{x}{2} \right)}}{2} + \int \left(- \frac{e^{2 x} \cos{\left(\frac{x}{2} \right)}}{16}\right)\, dx.

    3. Notice that the integrand has repeated itself, so move it to one side:

      17e2xcos(x2)dx16=e2xsin(x2)8+e2xcos(x2)2\frac{17 \int e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx}{16} = \frac{e^{2 x} \sin{\left(\frac{x}{2} \right)}}{8} + \frac{e^{2 x} \cos{\left(\frac{x}{2} \right)}}{2}

      Therefore,

      e2xcos(x2)dx=2e2xsin(x2)17+8e2xcos(x2)17\int e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx = \frac{2 e^{2 x} \sin{\left(\frac{x}{2} \right)}}{17} + \frac{8 e^{2 x} \cos{\left(\frac{x}{2} \right)}}{17}

  2. Now simplify:

    2(sin(x2)+4cos(x2))e2x17\frac{2 \left(\sin{\left(\frac{x}{2} \right)} + 4 \cos{\left(\frac{x}{2} \right)}\right) e^{2 x}}{17}

  3. Add the constant of integration:

    2(sin(x2)+4cos(x2))e2x17+constant\frac{2 \left(\sin{\left(\frac{x}{2} \right)} + 4 \cos{\left(\frac{x}{2} \right)}\right) e^{2 x}}{17}+ \mathrm{constant}


The answer is:

2(sin(x2)+4cos(x2))e2x17+constant\frac{2 \left(\sin{\left(\frac{x}{2} \right)} + 4 \cos{\left(\frac{x}{2} \right)}\right) e^{2 x}}{17}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        2*x    /x\        /x\  2*x
 |                      2*e   *sin|-|   8*cos|-|*e   
 |  2*x    /x\                    \2/        \2/     
 | e   *cos|-| dx = C + ------------- + -------------
 |         \2/                17              17     
 |                                                   
/                                                    
e2xcos(x2)dx=C+2e2xsin(x2)17+8e2xcos(x2)17\int e^{2 x} \cos{\left(\frac{x}{2} \right)}\, dx = C + \frac{2 e^{2 x} \sin{\left(\frac{x}{2} \right)}}{17} + \frac{8 e^{2 x} \cos{\left(\frac{x}{2} \right)}}{17}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
          2                        2
  8    2*e *sin(1/2)   8*cos(1/2)*e 
- -- + ------------- + -------------
  17         17              17     
817+2e2sin(12)17+8e2cos(12)17- \frac{8}{17} + \frac{2 e^{2} \sin{\left(\frac{1}{2} \right)}}{17} + \frac{8 e^{2} \cos{\left(\frac{1}{2} \right)}}{17}
=
=
          2                        2
  8    2*e *sin(1/2)   8*cos(1/2)*e 
- -- + ------------- + -------------
  17         17              17     
817+2e2sin(12)17+8e2cos(12)17- \frac{8}{17} + \frac{2 e^{2} \sin{\left(\frac{1}{2} \right)}}{17} + \frac{8 e^{2} \cos{\left(\frac{1}{2} \right)}}{17}
-8/17 + 2*exp(2)*sin(1/2)/17 + 8*cos(1/2)*exp(2)/17
Numerical answer [src]
2.99770933235429
2.99770933235429

    Use the examples entering the upper and lower limits of integration.