Mister Exam

Integral of xcoskx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  x*cos(k*x) dx
 |               
/                
0                
$$\int\limits_{0}^{1} x \cos{\left(k x \right)}\, dx$$
Integral(x*cos(k*x), (x, 0, 1))
The answer (Indefinite) [src]
                       //           2                      \                           
                       ||          x                       |                           
                       ||          --             for k = 0|                           
                       ||          2                       |                           
  /                    ||                                  |     //   x      for k = 0\
 |                     ||/-cos(k*x)                        |     ||                   |
 | x*cos(k*x) dx = C - |<|----------  for k != 0           | + x*|
            
$$\int x \cos{\left(k x \right)}\, dx = C + x \left(\begin{cases} x & \text{for}\: k = 0 \\\frac{\sin{\left(k x \right)}}{k} & \text{otherwise} \end{cases}\right) - \begin{cases} \frac{x^{2}}{2} & \text{for}\: k = 0 \\\frac{\begin{cases} - \frac{\cos{\left(k x \right)}}{k} & \text{for}\: k \neq 0 \\0 & \text{otherwise} \end{cases}}{k} & \text{otherwise} \end{cases}$$
The answer [src]
/  1    sin(k)   cos(k)                                  
|- -- + ------ + ------  for And(k > -oo, k < oo, k != 0)
|   2     k         2                                    
<  k               k                                     
|                                                        
|         1/2                       otherwise            
\                                                        
$$\begin{cases} \frac{\sin{\left(k \right)}}{k} + \frac{\cos{\left(k \right)}}{k^{2}} - \frac{1}{k^{2}} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\\frac{1}{2} & \text{otherwise} \end{cases}$$
=
=
/  1    sin(k)   cos(k)                                  
|- -- + ------ + ------  for And(k > -oo, k < oo, k != 0)
|   2     k         2                                    
<  k               k                                     
|                                                        
|         1/2                       otherwise            
\                                                        
$$\begin{cases} \frac{\sin{\left(k \right)}}{k} + \frac{\cos{\left(k \right)}}{k^{2}} - \frac{1}{k^{2}} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\\frac{1}{2} & \text{otherwise} \end{cases}$$
Piecewise((-1/k^2 + sin(k)/k + cos(k)/k^2, (k > -oo)∧(k < oo)∧(Ne(k, 0))), (1/2, True))

    Use the examples entering the upper and lower limits of integration.