Mister Exam

Integral of sin(x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  sin(x)*sin(x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin{\left(x \right)} \sin{\left(x \right)}\, dx$$
Integral(sin(x)*sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                        
 |                        x   cos(x)*sin(x)
 | sin(x)*sin(x) dx = C + - - -------------
 |                        2         2      
/                                          
$$\int \sin{\left(x \right)} \sin{\left(x \right)}\, dx = C + \frac{x}{2} - \frac{\sin{\left(x \right)} \cos{\left(x \right)}}{2}$$
The graph
The answer [src]
1   cos(1)*sin(1)
- - -------------
2         2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
=
=
1   cos(1)*sin(1)
- - -------------
2         2      
$$- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
1/2 - cos(1)*sin(1)/2
Numerical answer [src]
0.27267564329358
0.27267564329358
The graph
Integral of sin(x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.