0 / | | x*cos(k*x) dx | / -pi
Integral(x*cos(k*x), (x, -pi, 0))
// 2 \
|| x |
|| -- for k = 0|
|| 2 |
/ || | // x for k = 0\
| ||/-cos(k*x) | || |
| x*cos(k*x) dx = C - |<|---------- for k != 0 | + x*|
/1 cos(pi*k) pi*sin(pi*k) |-- - --------- - ------------ for And(k > -oo, k < oo, k != 0) | 2 2 k |k k < | 2 | -pi | ----- otherwise \ 2
=
/1 cos(pi*k) pi*sin(pi*k) |-- - --------- - ------------ for And(k > -oo, k < oo, k != 0) | 2 2 k |k k < | 2 | -pi | ----- otherwise \ 2
Piecewise((k^(-2) - cos(pi*k)/k^2 - pi*sin(pi*k)/k, (k > -oo)∧(k < oo)∧(Ne(k, 0))), (-pi^2/2, True))
Use the examples entering the upper and lower limits of integration.