0 / | | -x*cos(k*x) dx | / -pi
Integral((-x)*cos(k*x), (x, -pi, 0))
// 2 \
|| x |
|| -- for k = 0|
|| 2 |
/ // x for k = 0\ || |
| || | ||/-cos(k*x) |
| -x*cos(k*x) dx = C - x*|
/ 1 cos(pi*k) pi*sin(pi*k) |- -- + --------- + ------------ for And(k > -oo, k < oo, k != 0) | 2 2 k | k k < | 2 | pi | --- otherwise \ 2
=
/ 1 cos(pi*k) pi*sin(pi*k) |- -- + --------- + ------------ for And(k > -oo, k < oo, k != 0) | 2 2 k | k k < | 2 | pi | --- otherwise \ 2
Piecewise((-1/k^2 + cos(pi*k)/k^2 + pi*sin(pi*k)/k, (k > -oo)∧(k < oo)∧(Ne(k, 0))), (pi^2/2, True))
Use the examples entering the upper and lower limits of integration.