Mister Exam

Other calculators

Integral of 2x^3-3x^2+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /   3      2    \   
 |  \2*x  - 3*x  + 1/ dx
 |                      
/                       
0                       
01((2x33x2)+1)dx\int\limits_{0}^{1} \left(\left(2 x^{3} - 3 x^{2}\right) + 1\right)\, dx
Integral(2*x^3 - 3*x^2 + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2x3dx=2x3dx\int 2 x^{3}\, dx = 2 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: x42\frac{x^{4}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3x2)dx=3x2dx\int \left(- 3 x^{2}\right)\, dx = - 3 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x3- x^{3}

      The result is: x42x3\frac{x^{4}}{2} - x^{3}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x42x3+x\frac{x^{4}}{2} - x^{3} + x

  2. Add the constant of integration:

    x42x3+x+constant\frac{x^{4}}{2} - x^{3} + x+ \mathrm{constant}


The answer is:

x42x3+x+constant\frac{x^{4}}{2} - x^{3} + x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                                 4     
 | /   3      2    \              x     3
 | \2*x  - 3*x  + 1/ dx = C + x + -- - x 
 |                                2      
/                                        
((2x33x2)+1)dx=C+x42x3+x\int \left(\left(2 x^{3} - 3 x^{2}\right) + 1\right)\, dx = C + \frac{x^{4}}{2} - x^{3} + x
The graph
-1.00-0.75-0.50-0.252.000.000.250.500.751.001.251.501.75-1010
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.