Mister Exam

Other calculators


(2x^2+3)dx

Integral of (2x^2+3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /   2    \   
 |  \2*x  + 3/ dx
 |               
/                
0                
01(2x2+3)dx\int\limits_{0}^{1} \left(2 x^{2} + 3\right)\, dx
Integral(2*x^2 + 3, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      2x2dx=2x2dx\int 2 x^{2}\, dx = 2 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 2x33\frac{2 x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      3dx=3x\int 3\, dx = 3 x

    The result is: 2x33+3x\frac{2 x^{3}}{3} + 3 x

  2. Now simplify:

    x(2x2+9)3\frac{x \left(2 x^{2} + 9\right)}{3}

  3. Add the constant of integration:

    x(2x2+9)3+constant\frac{x \left(2 x^{2} + 9\right)}{3}+ \mathrm{constant}


The answer is:

x(2x2+9)3+constant\frac{x \left(2 x^{2} + 9\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              3
 | /   2    \                2*x 
 | \2*x  + 3/ dx = C + 3*x + ----
 |                            3  
/                                
(2x2+3)dx=C+2x33+3x\int \left(2 x^{2} + 3\right)\, dx = C + \frac{2 x^{3}}{3} + 3 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
11/3
113\frac{11}{3}
=
=
11/3
113\frac{11}{3}
11/3
Numerical answer [src]
3.66666666666667
3.66666666666667
The graph
Integral of (2x^2+3)dx dx

    Use the examples entering the upper and lower limits of integration.