Mister Exam

Other calculators


1/(x^2+6x+11)

Integral of 1/(x^2+6x+11) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                   
  /                   
 |                    
 |          1         
 |  1*------------- dx
 |     2              
 |    x  + 6*x + 11   
 |                    
/                     
2                     
$$\int\limits_{2}^{\infty} 1 \cdot \frac{1}{x^{2} + 6 x + 11}\, dx$$
Integral(1/(x^2 + 6*x + 11), (x, 2, oo))
Detail solution
We have the integral:
  /                    
 |                     
 |           1         
 | 1*1*------------- dx
 |      2              
 |     x  + 6*x + 11   
 |                     
/                      
Rewrite the integrand
        1                       1               
1*------------- = ------------------------------
   2                /                     2    \
  x  + 6*x + 11     |/   ___          ___\     |
                    ||-\/ 2       3*\/ 2 |     |
                  2*||-------*x - -------|  + 1|
                    \\   2           2   /     /
or
  /                      
 |                       
 |           1           
 | 1*1*------------- dx  
 |      2               =
 |     x  + 6*x + 11     
 |                       
/                        
  
  /                             
 |                              
 |             1                
 | -------------------------- dx
 |                      2       
 | /   ___          ___\        
 | |-\/ 2       3*\/ 2 |        
 | |-------*x - -------|  + 1   
 | \   2           2   /        
 |                              
/                               
--------------------------------
               2                
In the integral
  /                             
 |                              
 |             1                
 | -------------------------- dx
 |                      2       
 | /   ___          ___\        
 | |-\/ 2       3*\/ 2 |        
 | |-------*x - -------|  + 1   
 | \   2           2   /        
 |                              
/                               
--------------------------------
               2                
do replacement
          ___       ___
      3*\/ 2    x*\/ 2 
v = - ------- - -------
         2         2   
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     2            2   
do backward replacement
  /                                                             
 |                                                              
 |             1                                                
 | -------------------------- dx                                
 |                      2                                       
 | /   ___          ___\                                        
 | |-\/ 2       3*\/ 2 |                                        
 | |-------*x - -------|  + 1                /    ___       ___\
 | \   2           2   /             ___     |3*\/ 2    x*\/ 2 |
 |                                 \/ 2 *atan|------- + -------|
/                                            \   2         2   /
-------------------------------- = -----------------------------
               2                                 2              
Solution is:
              /    ___       ___\
      ___     |3*\/ 2    x*\/ 2 |
    \/ 2 *atan|------- + -------|
              \   2         2   /
C + -----------------------------
                  2              
The answer (Indefinite) [src]
                                      /    ___       ___\
  /                           ___     |3*\/ 2    x*\/ 2 |
 |                          \/ 2 *atan|------- + -------|
 |         1                          \   2         2   /
 | 1*------------- dx = C + -----------------------------
 |    2                                   2              
 |   x  + 6*x + 11                                       
 |                                                       
/                                                        
$${{\arctan \left({{2\,x+6}\over{2^{{{3}\over{2}}}}}\right)}\over{ \sqrt{2}}}$$
The graph
The answer [src]
            /    ___\           
    ___     |5*\/ 2 |           
  \/ 2 *atan|-------|        ___
            \   2   /   pi*\/ 2 
- ------------------- + --------
           2               4    
$$- \frac{\sqrt{2} \operatorname{atan}{\left(\frac{5 \sqrt{2}}{2} \right)}}{2} + \frac{\sqrt{2} \pi}{4}$$
=
=
            /    ___\           
    ___     |5*\/ 2 |           
  \/ 2 *atan|-------|        ___
            \   2   /   pi*\/ 2 
- ------------------- + --------
           2               4    
$$- \frac{\sqrt{2} \operatorname{atan}{\left(\frac{5 \sqrt{2}}{2} \right)}}{2} + \frac{\sqrt{2} \pi}{4}$$
The graph
Integral of 1/(x^2+6x+11) dx

    Use the examples entering the upper and lower limits of integration.