Integral of sin^3x/cos^7x dx
The solution
Detail solution
-
Rewrite the integrand:
cos7(x)sin3(x)=cos7(x)(1−cos2(x))sin(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫u7u2−1du
-
Let u=u2.
Then let du=2udu and substitute 2du:
∫4u4u−1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4u−1du=2∫u4u−1du
-
Rewrite the integrand:
u4u−1=u31−u41
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u31du=−2u21
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u41)du=−∫u41du
-
The integral of un is n+1un+1 when n=−1:
∫u41du=−3u31
So, the result is: 3u31
The result is: −2u21+3u31
So, the result is: −4u21+6u31
Now substitute u back in:
−4u41+6u61
Now substitute u back in:
−4cos4(x)1+6cos6(x)1
Method #2
-
Rewrite the integrand:
cos7(x)(1−cos2(x))sin(x)=cos7(x)−sin(x)cos2(x)+sin(x)
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute du:
∫u7u2−1du
-
Let u=u2.
Then let du=2udu and substitute 2du:
∫4u4u−1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4u−1du=2∫u4u−1du
-
Rewrite the integrand:
u4u−1=u31−u41
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u31du=−2u21
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u41)du=−∫u41du
-
The integral of un is n+1un+1 when n=−1:
∫u41du=−3u31
So, the result is: 3u31
The result is: −2u21+3u31
So, the result is: −4u21+6u31
Now substitute u back in:
−4u41+6u61
Now substitute u back in:
−4cos4(x)1+6cos6(x)1
Method #3
-
Rewrite the integrand:
cos7(x)(1−cos2(x))sin(x)=−cos5(x)sin(x)+cos7(x)sin(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−cos5(x)sin(x))dx=−∫cos5(x)sin(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u51du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u51)du=−∫u51du
-
The integral of un is n+1un+1 when n=−1:
∫u51du=−4u41
So, the result is: 4u41
Now substitute u back in:
4cos4(x)1
So, the result is: −4cos4(x)1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u71du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u71)du=−∫u71du
-
The integral of un is n+1un+1 when n=−1:
∫u71du=−6u61
So, the result is: 6u61
Now substitute u back in:
6cos6(x)1
The result is: −4cos4(x)1+6cos6(x)1
-
Now simplify:
12cos6(x)2−3cos2(x)
-
Add the constant of integration:
12cos6(x)2−3cos2(x)+constant
The answer is:
12cos6(x)2−3cos2(x)+constant
The answer (Indefinite)
[src]
/
|
| 3
| sin (x) 1 1
| ------- dx = C - --------- + ---------
| 7 4 6
| cos (x) 4*cos (x) 6*cos (x)
|
/
−12sin6x−36sin4x+36sin2x−123sin2x−1
The graph
2
1 2 - 3*cos (1)
-- + -------------
12 6
12*cos (1)
12sin61−36sin41+36sin21−121−4sin61−12sin41+12sin21−4sin21+121
=
2
1 2 - 3*cos (1)
-- + -------------
12 6
12*cos (1)
121+12cos6(1)−3cos2(1)+2
Use the examples entering the upper and lower limits of integration.