Mister Exam

Other calculators


sin^3x/cos^7x

Integral of sin^3x/cos^7x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     3      
 |  sin (x)   
 |  ------- dx
 |     7      
 |  cos (x)   
 |            
/             
0             
01sin3(x)cos7(x)dx\int\limits_{0}^{1} \frac{\sin^{3}{\left(x \right)}}{\cos^{7}{\left(x \right)}}\, dx
Detail solution
  1. Rewrite the integrand:

    sin3(x)cos7(x)=(1cos2(x))sin(x)cos7(x)\frac{\sin^{3}{\left(x \right)}}{\cos^{7}{\left(x \right)}} = \frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{7}{\left(x \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

      u21u7du\int \frac{u^{2} - 1}{u^{7}}\, du

      1. Let u=u2u = u^{2}.

        Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

        u14u4du\int \frac{u - 1}{4 u^{4}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u12u4du=u1u4du2\int \frac{u - 1}{2 u^{4}}\, du = \frac{\int \frac{u - 1}{u^{4}}\, du}{2}

          1. Rewrite the integrand:

            u1u4=1u31u4\frac{u - 1}{u^{4}} = \frac{1}{u^{3}} - \frac{1}{u^{4}}

          2. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (1u4)du=1u4du\int \left(- \frac{1}{u^{4}}\right)\, du = - \int \frac{1}{u^{4}}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                1u4du=13u3\int \frac{1}{u^{4}}\, du = - \frac{1}{3 u^{3}}

              So, the result is: 13u3\frac{1}{3 u^{3}}

            The result is: 12u2+13u3- \frac{1}{2 u^{2}} + \frac{1}{3 u^{3}}

          So, the result is: 14u2+16u3- \frac{1}{4 u^{2}} + \frac{1}{6 u^{3}}

        Now substitute uu back in:

        14u4+16u6- \frac{1}{4 u^{4}} + \frac{1}{6 u^{6}}

      Now substitute uu back in:

      14cos4(x)+16cos6(x)- \frac{1}{4 \cos^{4}{\left(x \right)}} + \frac{1}{6 \cos^{6}{\left(x \right)}}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))sin(x)cos7(x)=sin(x)cos2(x)+sin(x)cos7(x)\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{7}{\left(x \right)}} = \frac{- \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}}{\cos^{7}{\left(x \right)}}

    2. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

      u21u7du\int \frac{u^{2} - 1}{u^{7}}\, du

      1. Let u=u2u = u^{2}.

        Then let du=2ududu = 2 u du and substitute du2\frac{du}{2}:

        u14u4du\int \frac{u - 1}{4 u^{4}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          u12u4du=u1u4du2\int \frac{u - 1}{2 u^{4}}\, du = \frac{\int \frac{u - 1}{u^{4}}\, du}{2}

          1. Rewrite the integrand:

            u1u4=1u31u4\frac{u - 1}{u^{4}} = \frac{1}{u^{3}} - \frac{1}{u^{4}}

          2. Integrate term-by-term:

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (1u4)du=1u4du\int \left(- \frac{1}{u^{4}}\right)\, du = - \int \frac{1}{u^{4}}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                1u4du=13u3\int \frac{1}{u^{4}}\, du = - \frac{1}{3 u^{3}}

              So, the result is: 13u3\frac{1}{3 u^{3}}

            The result is: 12u2+13u3- \frac{1}{2 u^{2}} + \frac{1}{3 u^{3}}

          So, the result is: 14u2+16u3- \frac{1}{4 u^{2}} + \frac{1}{6 u^{3}}

        Now substitute uu back in:

        14u4+16u6- \frac{1}{4 u^{4}} + \frac{1}{6 u^{6}}

      Now substitute uu back in:

      14cos4(x)+16cos6(x)- \frac{1}{4 \cos^{4}{\left(x \right)}} + \frac{1}{6 \cos^{6}{\left(x \right)}}

    Method #3

    1. Rewrite the integrand:

      (1cos2(x))sin(x)cos7(x)=sin(x)cos5(x)+sin(x)cos7(x)\frac{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{\cos^{7}{\left(x \right)}} = - \frac{\sin{\left(x \right)}}{\cos^{5}{\left(x \right)}} + \frac{\sin{\left(x \right)}}{\cos^{7}{\left(x \right)}}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos5(x))dx=sin(x)cos5(x)dx\int \left(- \frac{\sin{\left(x \right)}}{\cos^{5}{\left(x \right)}}\right)\, dx = - \int \frac{\sin{\left(x \right)}}{\cos^{5}{\left(x \right)}}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          1u5du\int \frac{1}{u^{5}}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (1u5)du=1u5du\int \left(- \frac{1}{u^{5}}\right)\, du = - \int \frac{1}{u^{5}}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              1u5du=14u4\int \frac{1}{u^{5}}\, du = - \frac{1}{4 u^{4}}

            So, the result is: 14u4\frac{1}{4 u^{4}}

          Now substitute uu back in:

          14cos4(x)\frac{1}{4 \cos^{4}{\left(x \right)}}

        So, the result is: 14cos4(x)- \frac{1}{4 \cos^{4}{\left(x \right)}}

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        1u7du\int \frac{1}{u^{7}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u7)du=1u7du\int \left(- \frac{1}{u^{7}}\right)\, du = - \int \frac{1}{u^{7}}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            1u7du=16u6\int \frac{1}{u^{7}}\, du = - \frac{1}{6 u^{6}}

          So, the result is: 16u6\frac{1}{6 u^{6}}

        Now substitute uu back in:

        16cos6(x)\frac{1}{6 \cos^{6}{\left(x \right)}}

      The result is: 14cos4(x)+16cos6(x)- \frac{1}{4 \cos^{4}{\left(x \right)}} + \frac{1}{6 \cos^{6}{\left(x \right)}}

  3. Now simplify:

    23cos2(x)12cos6(x)\frac{2 - 3 \cos^{2}{\left(x \right)}}{12 \cos^{6}{\left(x \right)}}

  4. Add the constant of integration:

    23cos2(x)12cos6(x)+constant\frac{2 - 3 \cos^{2}{\left(x \right)}}{12 \cos^{6}{\left(x \right)}}+ \mathrm{constant}


The answer is:

23cos2(x)12cos6(x)+constant\frac{2 - 3 \cos^{2}{\left(x \right)}}{12 \cos^{6}{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                                       
 |    3                                  
 | sin (x)              1           1    
 | ------- dx = C - --------- + ---------
 |    7                  4           6   
 | cos (x)          4*cos (x)   6*cos (x)
 |                                       
/                                        
3sin2x112sin6x36sin4x+36sin2x12-{{3\,\sin ^2x-1}\over{12\,\sin ^6x-36\,\sin ^4x+36\,\sin ^2x-12}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5050
The answer [src]
              2   
1    2 - 3*cos (1)
-- + -------------
12           6    
       12*cos (1) 
112sin6136sin41+36sin2112sin214sin6112sin41+12sin214+112{{1}\over{12\,\sin ^61-36\,\sin ^41+36\,\sin ^21-12}}-{{\sin ^21 }\over{4\,\sin ^61-12\,\sin ^41+12\,\sin ^21-4}}+{{1}\over{12}}
=
=
              2   
1    2 - 3*cos (1)
-- + -------------
12           6    
       12*cos (1) 
112+3cos2(1)+212cos6(1)\frac{1}{12} + \frac{- 3 \cos^{2}{\left(1 \right)} + 2}{12 \cos^{6}{\left(1 \right)}}
Numerical answer [src]
3.84906381342323
3.84906381342323
The graph
Integral of sin^3x/cos^7x dx

    Use the examples entering the upper and lower limits of integration.