Mister Exam

Other calculators

Integral of (2x^2-3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2              
  /              
 |               
 |  /   2    \   
 |  \2*x  - 3/ dx
 |               
/                
3                
$$\int\limits_{3}^{-2} \left(2 x^{2} - 3\right)\, dx$$
Integral(2*x^2 - 3, (x, 3, -2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              
 |                              3
 | /   2    \                2*x 
 | \2*x  - 3/ dx = C - 3*x + ----
 |                            3  
/                                
$$\int \left(2 x^{2} - 3\right)\, dx = C + \frac{2 x^{3}}{3} - 3 x$$
The graph
The answer [src]
-25/3
$$- \frac{25}{3}$$
=
=
-25/3
$$- \frac{25}{3}$$
-25/3
Numerical answer [src]
-8.33333333333333
-8.33333333333333

    Use the examples entering the upper and lower limits of integration.