1 / | | ________ | / 2 | \/ 9 - x dx | / 0
Integral(sqrt(9 - x^2), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=3*sin(_theta), rewritten=9*cos(_theta)**2, substep=ConstantTimesRule(constant=9, other=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), context=9*cos(_theta)**2, symbol=_theta), restriction=(x > -3) & (x < 3), context=sqrt(9 - x**2), symbol=x)
Add the constant of integration:
The answer is:
/ | | ________ // /x\ ________ \ | / 2 ||9*asin|-| / 2 | | \/ 9 - x dx = C + |< \3/ x*\/ 9 - x | | ||--------- + ------------- for And(x > -3, x < 3)| / \\ 2 2 /
___ 9*asin(1/3) \/ 2 + ----------- 2
=
___ 9*asin(1/3) \/ 2 + ----------- 2
sqrt(2) + 9*asin(1/3)/2
Use the examples entering the upper and lower limits of integration.