Mister Exam

Other calculators

Integral of 2sqrt(3x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      _________   
 |  2*\/ 3*x - 2  dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 2 \sqrt{3 x - 2}\, dx$$
Integral(2*sqrt(3*x - 2), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                   3/2
 |     _________          4*(3*x - 2)   
 | 2*\/ 3*x - 2  dx = C + --------------
 |                              9       
/                                       
$$\int 2 \sqrt{3 x - 2}\, dx = C + \frac{4 \left(3 x - 2\right)^{\frac{3}{2}}}{9}$$
The graph
The answer [src]
          ___
4   8*I*\/ 2 
- + ---------
9       9    
$$\frac{4}{9} + \frac{8 \sqrt{2} i}{9}$$
=
=
          ___
4   8*I*\/ 2 
- + ---------
9       9    
$$\frac{4}{9} + \frac{8 \sqrt{2} i}{9}$$
4/9 + 8*i*sqrt(2)/9
Numerical answer [src]
(0.443621208120803 + 1.2565791840081j)
(0.443621208120803 + 1.2565791840081j)

    Use the examples entering the upper and lower limits of integration.