1 / | | 7*x | e *sin(x) dx | / 0
Integral(exp(7*x)*sin(x), (x, 0, 1))
Use integration by parts, noting that the integrand eventually repeats itself.
For the integrand :
Let and let .
Then .
For the integrand :
Let and let .
Then .
Notice that the integrand has repeated itself, so move it to one side:
Therefore,
Now simplify:
Add the constant of integration:
The answer is:
/ | 7*x 7*x | 7*x cos(x)*e 7*e *sin(x) | e *sin(x) dx = C - ----------- + ------------- | 50 50 /
7 7 1 cos(1)*e 7*e *sin(1) -- - --------- + ----------- 50 50 50
=
7 7 1 cos(1)*e 7*e *sin(1) -- - --------- + ----------- 50 50 50
1/50 - cos(1)*exp(7)/50 + 7*exp(7)*sin(1)/50
Use the examples entering the upper and lower limits of integration.