Integral of 1÷(x^2-1) dx
The solution
Detail solution
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), False), (ArccothRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 < 1)], context=1/(x**2 - 1), symbol=x)
-
Add the constant of integration:
{−acoth(x)−atanh(x)forx2>1forx2<1+constant
The answer is:
{−acoth(x)−atanh(x)forx2>1forx2<1+constant
The answer (Indefinite)
[src]
/
| // 2 \
| 1 ||-acoth(x) for x > 1|
| ------ dx = C + |< |
| 2 || 2 |
| x - 1 \\-atanh(x) for x < 1/
|
/
∫x2−11dx=C+{−acoth(x)−atanh(x)forx2>1forx2<1
The graph
−∞−2iπ
=
−∞−2iπ
Use the examples entering the upper and lower limits of integration.