1 / | | 1 | ------ dx | 2 | x - 1 | / 0
Integral(1/(x^2 - 1), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), False), (ArccothRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 > 1), (ArctanhRule(a=1, b=1, c=-1, context=1/(x**2 - 1), symbol=x), x**2 < 1)], context=1/(x**2 - 1), symbol=x)
Add the constant of integration:
The answer is:
/ | // 2 \ | 1 ||-acoth(x) for x > 1| | ------ dx = C + |< | | 2 || 2 | | x - 1 \\-atanh(x) for x < 1/ | /
pi*I -oo - ---- 2
=
pi*I -oo - ---- 2
-oo - pi*i/2
Use the examples entering the upper and lower limits of integration.