Mister Exam

Integral of 2*sin4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  2*sin(4*x) dx
 |               
/                
pi               
--               
4                
π412sin(4x)dx\int\limits_{\frac{\pi}{4}}^{1} 2 \sin{\left(4 x \right)}\, dx
Integral(2*sin(4*x), (x, pi/4, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2sin(4x)dx=2sin(4x)dx\int 2 \sin{\left(4 x \right)}\, dx = 2 \int \sin{\left(4 x \right)}\, dx

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: cos(4x)2- \frac{\cos{\left(4 x \right)}}{2}

  2. Add the constant of integration:

    cos(4x)2+constant- \frac{\cos{\left(4 x \right)}}{2}+ \mathrm{constant}


The answer is:

cos(4x)2+constant- \frac{\cos{\left(4 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                     cos(4*x)
 | 2*sin(4*x) dx = C - --------
 |                        2    
/                              
2sin(4x)dx=Ccos(4x)2\int 2 \sin{\left(4 x \right)}\, dx = C - \frac{\cos{\left(4 x \right)}}{2}
The graph
1.000.800.820.840.860.880.900.920.940.960.982-2
The answer [src]
  1   cos(4)
- - - ------
  2     2   
12cos(4)2- \frac{1}{2} - \frac{\cos{\left(4 \right)}}{2}
=
=
  1   cos(4)
- - - ------
  2     2   
12cos(4)2- \frac{1}{2} - \frac{\cos{\left(4 \right)}}{2}
-1/2 - cos(4)/2
Numerical answer [src]
-0.173178189568194
-0.173178189568194

    Use the examples entering the upper and lower limits of integration.