Integral of (3x+2)sin4xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(3x+2)sin(4x)=3xsin(4x)+2sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xsin(4x)dx=3∫xsin(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
So, the result is: −43xcos(4x)+163sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(4x)dx=2∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: −2cos(4x)
The result is: −43xcos(4x)+163sin(4x)−2cos(4x)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=3x+2 and let dv(x)=sin(4x).
Then du(x)=3.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−43cos(4x))dx=−43∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −163sin(4x)
Method #3
-
Rewrite the integrand:
(3x+2)sin(4x)=3xsin(4x)+2sin(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3xsin(4x)dx=3∫xsin(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(4x).
Then du(x)=1.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4cos(4x))dx=−4∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −16sin(4x)
So, the result is: −43xcos(4x)+163sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(4x)dx=2∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: −2cos(4x)
The result is: −43xcos(4x)+163sin(4x)−2cos(4x)
-
Add the constant of integration:
−43xcos(4x)+163sin(4x)−2cos(4x)+constant
The answer is:
−43xcos(4x)+163sin(4x)−2cos(4x)+constant
The answer (Indefinite)
[src]
/
| cos(4*x) 3*sin(4*x) 3*x*cos(4*x)
| (3*x + 2)*sin(4*x) dx = C - -------- + ---------- - ------------
| 2 16 4
/
∫(3x+2)sin(4x)dx=C−43xcos(4x)+163sin(4x)−2cos(4x)
The graph
1 5*cos(4) 3*sin(4)
- - -------- + --------
2 4 16
163sin(4)+21−45cos(4)
=
1 5*cos(4) 3*sin(4)
- - -------- + --------
2 4 16
163sin(4)+21−45cos(4)
1/2 - 5*cos(4)/4 + 3*sin(4)/16
Use the examples entering the upper and lower limits of integration.