Mister Exam

Other calculators


(x^2)sin4xdx

Integral of (x^2)sin4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2              
 |  x *sin(4*x)*1 dx
 |                  
/                   
0                   
01x2sin(4x)1dx\int\limits_{0}^{1} x^{2} \sin{\left(4 x \right)} 1\, dx
Integral(x^2*sin(4*x)*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=sin(4x)\operatorname{dv}{\left(x \right)} = \sin{\left(4 x \right)}.

    Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

    To find v(x)v{\left(x \right)}:

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)16du\int \frac{\sin{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)4du=sin(u)du4\int \frac{\sin{\left(u \right)}}{4}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = - \frac{x}{2} and let dv(x)=cos(4x)\operatorname{dv}{\left(x \right)} = \cos{\left(4 x \right)}.

    Then du(x)=12\operatorname{du}{\left(x \right)} = - \frac{1}{2}.

    To find v(x)v{\left(x \right)}:

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Now substitute uu back in:

      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

    Now evaluate the sub-integral.

  3. The integral of a constant times a function is the constant times the integral of the function:

    (sin(4x)8)dx=sin(4x)dx8\int \left(- \frac{\sin{\left(4 x \right)}}{8}\right)\, dx = - \frac{\int \sin{\left(4 x \right)}\, dx}{8}

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)16du\int \frac{\sin{\left(u \right)}}{16}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)4du=sin(u)du4\int \frac{\sin{\left(u \right)}}{4}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: cos(4x)32\frac{\cos{\left(4 x \right)}}{32}

  4. Add the constant of integration:

    x2cos(4x)4+xsin(4x)8+cos(4x)32+constant- \frac{x^{2} \cos{\left(4 x \right)}}{4} + \frac{x \sin{\left(4 x \right)}}{8} + \frac{\cos{\left(4 x \right)}}{32}+ \mathrm{constant}


The answer is:

x2cos(4x)4+xsin(4x)8+cos(4x)32+constant- \frac{x^{2} \cos{\left(4 x \right)}}{4} + \frac{x \sin{\left(4 x \right)}}{8} + \frac{\cos{\left(4 x \right)}}{32}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                          
 |                                    2                      
 |  2                     cos(4*x)   x *cos(4*x)   x*sin(4*x)
 | x *sin(4*x)*1 dx = C + -------- - ----------- + ----------
 |                           32           4            8     
/                                                            
8xsin(4x)+(216x2)cos(4x)64{{8\,x\,\sin \left(4\,x\right)+\left(2-16\,x^2\right)\,\cos \left(4 \,x\right)}\over{64}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
  1    7*cos(4)   sin(4)
- -- - -------- + ------
  32      32        8   
4sin47cos432132{{4\,\sin 4-7\,\cos 4}\over{32}}-{{1}\over{32}}
=
=
  1    7*cos(4)   sin(4)
- -- - -------- + ------
  32      32        8   
sin(4)81327cos(4)32\frac{\sin{\left(4 \right)}}{8} - \frac{1}{32} - \frac{7 \cos{\left(4 \right)}}{32}
Numerical answer [src]
0.0171342301504241
0.0171342301504241
The graph
Integral of (x^2)sin4xdx dx

    Use the examples entering the upper and lower limits of integration.