Mister Exam

Other calculators

Integral of 2*cos(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x              
  -              
  2              
  /              
 |               
 |  2*cos(3*x) dx
 |               
/                
0                
0x22cos(3x)dx\int\limits_{0}^{\frac{x}{2}} 2 \cos{\left(3 x \right)}\, dx
Integral(2*cos(3*x), (x, 0, x/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    2cos(3x)dx=2cos(3x)dx\int 2 \cos{\left(3 x \right)}\, dx = 2 \int \cos{\left(3 x \right)}\, dx

    1. Let u=3xu = 3 x.

      Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

      cos(u)3du\int \frac{\cos{\left(u \right)}}{3}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du3\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{3}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)3\frac{\sin{\left(u \right)}}{3}

      Now substitute uu back in:

      sin(3x)3\frac{\sin{\left(3 x \right)}}{3}

    So, the result is: 2sin(3x)3\frac{2 \sin{\left(3 x \right)}}{3}

  2. Add the constant of integration:

    2sin(3x)3+constant\frac{2 \sin{\left(3 x \right)}}{3}+ \mathrm{constant}


The answer is:

2sin(3x)3+constant\frac{2 \sin{\left(3 x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                     2*sin(3*x)
 | 2*cos(3*x) dx = C + ----------
 |                         3     
/                                
2cos(3x)dx=C+2sin(3x)3\int 2 \cos{\left(3 x \right)}\, dx = C + \frac{2 \sin{\left(3 x \right)}}{3}
The answer [src]
     /3*x\
2*sin|---|
     \ 2 /
----------
    3     
2sin(3x2)3\frac{2 \sin{\left(\frac{3 x}{2} \right)}}{3}
=
=
     /3*x\
2*sin|---|
     \ 2 /
----------
    3     
2sin(3x2)3\frac{2 \sin{\left(\frac{3 x}{2} \right)}}{3}
2*sin(3*x/2)/3

    Use the examples entering the upper and lower limits of integration.