Integral of dx/(1-4*x^2) dx
The solution
Detail solution
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), False), (ArccothRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), x**2 > 1/4), (ArctanhRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), x**2 < 1/4)], context=1/(1 - 4*x**2), symbol=x)
-
Add the constant of integration:
{2acoth(2x)2atanh(2x)forx2>41forx2<41+constant
The answer is:
{2acoth(2x)2atanh(2x)forx2>41forx2<41+constant
The answer (Indefinite)
[src]
/ //acoth(2*x) 2 \
| ||---------- for x > 1/4|
| 1 || 2 |
| -------- dx = C + |< |
| 2 ||atanh(2*x) 2 |
| 1 - 4*x ||---------- for x < 1/4|
| \\ 2 /
/
∫1−4x21dx=C+{2acoth(2x)2atanh(2x)forx2>41forx2<41
The graph
Use the examples entering the upper and lower limits of integration.