1 / | | 1 | -------- dx | 2 | 1 - 4*x | / 0
Integral(1/(1 - 4*x^2), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), False), (ArccothRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), x**2 > 1/4), (ArctanhRule(a=1, b=-4, c=1, context=1/(1 - 4*x**2), symbol=x), x**2 < 1/4)], context=1/(1 - 4*x**2), symbol=x)
Add the constant of integration:
The answer is:
/ //acoth(2*x) 2 \ | ||---------- for x > 1/4| | 1 || 2 | | -------- dx = C + |< | | 2 ||atanh(2*x) 2 | | 1 - 4*x ||---------- for x < 1/4| | \\ 2 / /
Use the examples entering the upper and lower limits of integration.