Integral of 2/3xy dy
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫32xydy=32x∫ydy
-
The integral of yn is n+1yn+1 when n=−1:
∫ydy=2y2
So, the result is: 3xy2
-
Add the constant of integration:
3xy2+constant
The answer is:
3xy2+constant
The answer (Indefinite)
[src]
/
| 2
| 2*x x*y
| ---*y dy = C + ----
| 3 3
|
/
∫32xydy=C+3xy2
2
/ 3*x\
x*|3 - ---|
\ 2 /
------------
3
3x(3−23x)2
=
2
/ 3*x\
x*|3 - ---|
\ 2 /
------------
3
3x(3−23x)2
Use the examples entering the upper and lower limits of integration.