Mister Exam

Other calculators

Integral of (3*x^2+2*x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /   2          \   
 |  \3*x  + 2*x - 1/ dx
 |                     
/                      
-2                     
21((3x2+2x)1)dx\int\limits_{-2}^{1} \left(\left(3 x^{2} + 2 x\right) - 1\right)\, dx
Integral(3*x^2 + 2*x - 1, (x, -2, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: x3x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      The result is: x3+x2x^{3} + x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x3+x2xx^{3} + x^{2} - x

  2. Now simplify:

    x(x2+x1)x \left(x^{2} + x - 1\right)

  3. Add the constant of integration:

    x(x2+x1)+constantx \left(x^{2} + x - 1\right)+ \mathrm{constant}


The answer is:

x(x2+x1)+constantx \left(x^{2} + x - 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 | /   2          \           2    3    
 | \3*x  + 2*x - 1/ dx = C + x  + x  - x
 |                                      
/                                       
((3x2+2x)1)dx=C+x3+x2x\int \left(\left(3 x^{2} + 2 x\right) - 1\right)\, dx = C + x^{3} + x^{2} - x
The graph
-2.00-1.75-1.50-1.25-1.00-0.75-0.50-0.251.000.000.250.500.75-1010
The answer [src]
3
33
=
=
3
33
3
Numerical answer [src]
3.0
3.0

    Use the examples entering the upper and lower limits of integration.