Mister Exam

Other calculators


(3*x^2+2*x+1)

Integral of (3*x^2+2*x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2                    
  /                    
 |                     
 |  /   2          \   
 |  \3*x  + 2*x + 1/ dx
 |                     
/                      
-4                     
42(3x2+2x+1)dx\int\limits_{-4}^{-2} \left(3 x^{2} + 2 x + 1\right)\, dx
Integral(3*x^2 + 2*x + 1, (x, -4, -2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    The result is: x3+x2+xx^{3} + x^{2} + x

  2. Now simplify:

    x(x2+x+1)x \left(x^{2} + x + 1\right)

  3. Add the constant of integration:

    x(x2+x+1)+constantx \left(x^{2} + x + 1\right)+ \mathrm{constant}


The answer is:

x(x2+x+1)+constantx \left(x^{2} + x + 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 | /   2          \               2    3
 | \3*x  + 2*x + 1/ dx = C + x + x  + x 
 |                                      
/                                       
x3+x2+xx^3+x^2+x
The graph
-4.0-2.0-3.8-3.6-3.4-3.2-3.0-2.8-2.6-2.4-2.2-100100
The answer [src]
46
4646
=
=
46
4646
Numerical answer [src]
46.0
46.0
The graph
Integral of (3*x^2+2*x+1) dx

    Use the examples entering the upper and lower limits of integration.