Mister Exam

Other calculators

Integral of 3*x*y dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x         
  -         
  2         
  /         
 |          
 |  3*x*y dy
 |          
/           
0           
0x23xydy\int\limits_{0}^{\frac{x}{2}} 3 x y\, dy
Integral((3*x)*y, (y, 0, x/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    3xydy=3xydy\int 3 x y\, dy = 3 x \int y\, dy

    1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

      ydy=y22\int y\, dy = \frac{y^{2}}{2}

    So, the result is: 3xy22\frac{3 x y^{2}}{2}

  2. Add the constant of integration:

    3xy22+constant\frac{3 x y^{2}}{2}+ \mathrm{constant}


The answer is:

3xy22+constant\frac{3 x y^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    2
 |                3*x*y 
 | 3*x*y dy = C + ------
 |                  2   
/                       
3xydy=C+3xy22\int 3 x y\, dy = C + \frac{3 x y^{2}}{2}
The answer [src]
   3
3*x 
----
 8  
3x38\frac{3 x^{3}}{8}
=
=
   3
3*x 
----
 8  
3x38\frac{3 x^{3}}{8}
3*x^3/8

    Use the examples entering the upper and lower limits of integration.