Mister Exam

Integral of 3x*y-2t dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  t                 
  /                 
 |                  
 |  (3*x*y - 2*t) dt
 |                  
/                   
0                   
$$\int\limits_{0}^{t} \left(- 2 t + 3 x y\right)\, dt$$
Integral((3*x)*y - 2*t, (t, 0, t))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                         2          
 | (3*x*y - 2*t) dt = C - t  + 3*t*x*y
 |                                    
/                                     
$$\int \left(- 2 t + 3 x y\right)\, dt = C - t^{2} + 3 t x y$$
The answer [src]
   2          
- t  + 3*t*x*y
$$- t^{2} + 3 t x y$$
=
=
   2          
- t  + 3*t*x*y
$$- t^{2} + 3 t x y$$
-t^2 + 3*t*x*y

    Use the examples entering the upper and lower limits of integration.