Mister Exam

Integral of 3x*y-2t dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  t                 
  /                 
 |                  
 |  (3*x*y - 2*t) dt
 |                  
/                   
0                   
0t(2t+3xy)dt\int\limits_{0}^{t} \left(- 2 t + 3 x y\right)\, dt
Integral((3*x)*y - 2*t, (t, 0, t))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2t)dt=2tdt\int \left(- 2 t\right)\, dt = - 2 \int t\, dt

      1. The integral of tnt^{n} is tn+1n+1\frac{t^{n + 1}}{n + 1} when n1n \neq -1:

        tdt=t22\int t\, dt = \frac{t^{2}}{2}

      So, the result is: t2- t^{2}

    1. The integral of a constant is the constant times the variable of integration:

      3xydt=3txy\int 3 x y\, dt = 3 t x y

    The result is: t2+3txy- t^{2} + 3 t x y

  2. Now simplify:

    t(t+3xy)t \left(- t + 3 x y\right)

  3. Add the constant of integration:

    t(t+3xy)+constantt \left(- t + 3 x y\right)+ \mathrm{constant}


The answer is:

t(t+3xy)+constantt \left(- t + 3 x y\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                         2          
 | (3*x*y - 2*t) dt = C - t  + 3*t*x*y
 |                                    
/                                     
(2t+3xy)dt=Ct2+3txy\int \left(- 2 t + 3 x y\right)\, dt = C - t^{2} + 3 t x y
The answer [src]
   2          
- t  + 3*t*x*y
t2+3txy- t^{2} + 3 t x y
=
=
   2          
- t  + 3*t*x*y
t2+3txy- t^{2} + 3 t x y
-t^2 + 3*t*x*y

    Use the examples entering the upper and lower limits of integration.