Integral of 3x*y-2t dt
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2t)dt=−2∫tdt
-
The integral of tn is n+1tn+1 when n=−1:
∫tdt=2t2
So, the result is: −t2
-
The integral of a constant is the constant times the variable of integration:
∫3xydt=3txy
The result is: −t2+3txy
-
Now simplify:
t(−t+3xy)
-
Add the constant of integration:
t(−t+3xy)+constant
The answer is:
t(−t+3xy)+constant
The answer (Indefinite)
[src]
/
| 2
| (3*x*y - 2*t) dt = C - t + 3*t*x*y
|
/
∫(−2t+3xy)dt=C−t2+3txy
−t2+3txy
=
−t2+3txy
Use the examples entering the upper and lower limits of integration.